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HIGHLIGHTS

o A methodology for examining ICT-derived traffic volumes is presented.

e Whereas some problems were found, in general ICT data were reliable.

o Traffic was reported in cells devoid of roads, due to scattering from adjacent cells.
o ICT data have better spatiotemporal availability than more traditional data sources.
e The ICT-based traffic volumes were successfully used as a proxy for NO2 emissions.
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Most air quality models use traffic-related variables as an input. Previous studies estimated nearby
vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have
previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the
estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are
GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from

such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations,
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using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data
show great potential for use as a proxy for pollutant emissions from motor-vehicles.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Motor-vehicles are the largest contributors to urban air pollu-
tion in the developed world. This results from the ever-increasing
abundance of motorized vehicles in urban areas (Fenger, 2009);
the proximity of vehicular emissions to the population (Karppinen
et al., 2000); and the difficulty in controlling emissions from in-
ternal combustion engines (Wang et al., 2004). Diesel-powered

Abbreviations: AQM, Air Quality Monitoring; ATV, Aggregated Tracking of Ve-
hicles; CBS, Central Bus Station; CTM, Chemistry Transport Model; ICT, Information
and Communication Technology; LUR, Land Use Regression; ODM, Optimised
Dispersion Model; PSFM, Percentage Span From Mean; PSFMwA, Percentage Span
From Mean with Adjacent cells; TA, Traffic Assignment.
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vehicles generally emit more nitrogen oxides and particulate
matter than petrol-powered vehicles, while carbon monoxide and
volatile organic compounds emissions are lower (Song, 2000;
McAllister et al., 2011). Heavy-duty vehicles are usually both
diesel-powered and burn fuel at a higher rate than private cars
(Gaffney and Marley, 2009; Schipper, 2008). Thus, in order to reli-
ably assess exposure to air pollution it is important to account for
both traffic activity patterns and fleet composition. Most common
air quality models, such as Chemistry-Transport Models (CTM) and
Land Use Regression (LUR), make use of traffic-related variables as
input (Hennig et al., 2016).

Some studies considered only geographical attributes of the
road network (e.g., category and size) to proxy emissions (Hoek
et al,, 2008). This approach can lead to large model errors, as
observed by Johansson et al. (2015). A more accurate proxy could be
obtained when accounting for the traffic volume (Beelen et al.,
2013; Janssen et al., 2008). Indeed, some studies used detailed
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traffic counts to estimate emissions (e.g. Barth and
Boriboonsomsin, 2009; Pratt et al., 2014). However, such data are
rarely available with sufficient accuracy and detail across large
areas, and are also biased towards roads with higher traffic vol-
umes. For example, Beelen et al. (2007a,b) tried to obtain traffic
intensities for the entire Netherlands, in order to use them for
exposure assessment. Combining inputs from all the municipalities
turned out to be an enormous effort and resulted in a lot of missing
data. Similarly, at any given time 30% of the inductive loop detectors
in California are malfunctioning (Herrera et al., 2010).

Another commonly used method to estimate traffic intensities is
the use of Traffic Assignment (TA) models (e.g. Dhondt et al., 2012;
Yuval et al., 2013; Shekarrizfard et al., 2015). TA models require
population travel demand information, which is traditionally
derived from census data, questionnaires and road sensors
(Calabrese et al., 2011; Bekhor and Shem-Tov, 2015). These data
sources are often limited in spatio-temporal scope (Calabrese et al.,
2011). For example, relatively high TA model errors have been
found on low-volume roads in Florida (Lan et al., 2005), and rela-
tively large night-time errors were reported in Berlin (Rieser et al.,
2007).

A possible alternative is to use data streams from emerging In-
formation and Communication Technologies (ICT), such as GPS and
cellular tracking (Antoniou et al., 2011). For example, Castro et al.
(2012) fitted 5000 taxies with GPS devices and successfully esti-
mated road capacities. Bekhor et al. (2013) used data from GPS-
equipped vehicles tracked by Decell Technologies to estimate
free-flow driving speeds. Although not yet ubiquitous, the pro-
portion of vehicles with integrated GPS systems is increasing
(Castro et al., 2012). GPS devices have a reported accuracy of about
10 m (Djuknic and Richton, 2001). Mobile phone triangulation data
are less accurate but can also be used to estimate traffic parameters
and are more pervasive in the population (Bar-Gera, 2007). Bekhor
and Shem-Tov (2015) showed high correlations between traffic
patterns inferred from cellular data and more traditional surveys.
However, some important issues were highlighted, including
under-estimation of traffic during morning rush-hour and inac-
curacies in regions with a sparse distribution of antennas. A pro-
totypical combined approach was presented by Herrera et al.
(2010), using GPS-enabled mobile phones to gather traffic data.
The temporal coverage of ICT data is not limited, since these devices
normally operate continuously. In addition, ICT can provide data
directly on a grid, which unlike data on road segments do not
require a conversion process (such as employed by Yuval et al,,
2013; Pratt et al., 2014) for use as emission proxies. However,
gridded data may be less accurate as it does not represent the exact
location of the emissions. In addition, there may be sampling biases
associated with an uneven distribution of personal ICT devices
among the population.

Recent studies (Liu et al., 2013b; Pratt et al., 2014; Gariazzo et al.,
2016; Dewulf et al., 2016) used ICT tracking of individuals' trajec-
tories to assess their personal exposure over a modelled pollution
map. Etyemezian et al. (2003) used on-board GPS receivers to
correlate driving conditions and road dust emissions. Other studies
(Liu et al., 2013a; Borrego et al., 2016) used Aggregated Tracking of
GPS-equipped Vehicles (ATV) to estimate driving behaviour and
incorporate it into an emission factors calculation. However, no
spatial air quality modelling scheme has been reported to date
using this revolutionary data source as a proxy for vehicle volumes
or traffic flows.

In this work we study an ATV dataset that covers most of the
populated area of Israel in a 250 m x 250 m grid and use it to proxy
traffic emissions, extending our previously published optimised
dispersion work (Yuval et al., 2013).

2. Materials and methods
2.1. ATV traffic data

During 2012, Decell Technologies collected GPS data from a fleet
of vehicles fitted with GPS tracking devices. Their sample included
more than 100,000 vehicles of various types, including a high
percentage of the heavy trucks in Israel. There were approximately
2 million vehicles in Israel at 2012 (Bekhor et al., 2013). Decell
extrapolated the vehicle volumes from their sample to the full
population using traffic counts obtained from the Israeli Central
Bureau of Statistics. These counts were performed using pneumatic
road tubes at selected road segments of the main highways in Israel
during one week at 2012 (Central Bureau of Statistics, 2015).

We obtained the 2012 yearly mean traffic data from Decell.
Vehicle volumes were given in 125,733 grid cells of 250 x 250 m?,
covering about 37% of the land area of Israel and 86% of its popu-
lation. We refer the reader to the web version of this article for an
interactive view of the study area. Each grid cell contained a distinct
mean volume (average number of vehicles passing through the cell
per hour) for buses, trucks and private vehicles, with trucks defined
as vehicles over 5 tonnes (excluding buses) and minibuses counted
as private vehicles. For each of the three vehicle types, mean vol-
umes were provided for 11 daily time windows: 00:00—03:00,
03:00—06:00, 06:00—07:00, 07:00—08:00, 08:00—09:00,
09:00—12:00,  12:00-15:00,  15:00—18:00,  18:00—20:00,
20:00—22:00 and 22:00—24:00. These time windows provide more
granular separation in hours with higher temporal variability (i.e.
rush-hours) and coarser separation for times with reduced traffic
activity. Moreover, separate data were obtained for weekdays
(Sunday-Thursday in Israel), Fridays and Saturdays (the weekend in
Israel). Additional data granulation has been made for routine and
vacation (Jewish holidays and summer) periods, for a total of 198
data per grid cell. This granulation was chosen in order to optimise
the trade-off between the temporal resolution of the dataset and
the sample size of the signals used for each datum.

2.2. ATV data validation

Errors in the input data to an air quality model have the po-
tential to propagate and cause inaccuracies in exposure estimation.
As ICT data have never before been used for this purpose, we find it
particularly important to put them through scrutiny and document
the results.

2.2.1. Daily patterns

Grid cells located on routes between residential and business
areas are expected to show peak traffic volume during the morning
and afternoon rush-hours. Several such grid cells were selected and
examined. In addition, a more quantitative analysis was performed
using magnetic loop detector traffic counts at 5-min intervals for
Highway 20 (H20) from the 15 to the 23 of April 2011. This period
included a routine weekend, a routine weekday, three holiday
weekdays and a holiday weekend. The linear correlations between
the traffic counts and the ATV data were calculated, with the high-
resolution traffic counts averaged over the ATV data time windows.
Only results for the routine weekday (April 17) and the routine
Saturday (April 16) are presented.

2.2.2. Spatial patterns

It is expected to find higher traffic volumes in grid cells that
intersect with main roads, and lower volumes as the road priority
decreases. However, the difference between traffic volumes in
different municipalities could, in principal, be greater. We chose to
test the spatial fit of the ATV data to the Israeli road network in



S. Chen et al. / Atmospheric Environment 142 (2016) 351—-359 353

three different municipalities. These included two large cities (Tel-
Aviv and Haifa) and one suburban region (Lev Hasharon). Road
categories were extracted from OpenStreetMap and assigned a
class according to their official definition (OpenStreetMap
Contributors, 2016) and manual sampling of roads from each
category. Table 1 details the interpreted type and assigned class for
each OpenStreetMap road category. Each grid cell was assigned the
highest class of road segment intersecting it. The Spearman cor-
relation (Spearman, 1904) was calculated between the ordinal
classes and the continuous traffic volumes in each municipality.

Daily traffic counts for 423 intersections in Tel Aviv were ob-
tained from the municipality. Each count was taken on a single
workday, once in each location, from 07:00 to 19:00 during
2008—2012. Of these counts, 395 had separate entries for trucks,
buses and private vehicles. The spatial Pearson correlations of the
traffic volumes of different vehicle types were compared between
the counts and the ATV dataset. For this comparison, the 395
closest unique ATV grid cell centroids were chosen. ATV traffic
estimates were summed over the whole day from 07:00 until
19:00.

2.2.3. Traffic flow conservation
The number of vehicles travelling in sequential segments of a
road should remain constant between intersections. We located
isolated road segments of five highways (H2, H4, H6, H34 and H70).
Each of these segments is: (a) roughly parallel to one of the ATV
data grid axes; and (b) has no neighbouring non-agricultural roads
within 750 m of it (the width of three grid cells). These roads are
marked on the Supplementary interactive map available with the
online version of this article. Five grid cells along each of the five
road segments were selected. The percentage difference between
the traffic volume in each grid cell to the segment mean was
calculated:
0jj = u 100% (1)
Vi

where Vjj is the total vehicle volume in the ith grid cell along the jth
road segment and VJ is the arithmetic mean of the total vehicle
volume in the 5 grid cells along the jth road segment. For each road
segment, the Percentage Span From Mean (PSFM) was defined as:

PSFMJ = max(éU, 55]) — min ((S]j, 65]) (2)

In order to account for possible scatter of ATV data around the
highway, the PSFM was calculated also while accounting for traffic
volume in the two directly adjacent cells to each chosen grid cell,
normal to the road direction. In this way, each of the five datapoints
along the road segment represents the sum of three adjacent cells,
and the calculated PSFM value for the segment in this case is
designated the Percentage Span From Mean with Adjacent cells
(PSFMwA).

2.2.4. Locations with known traffic patterns

Unique traffic patterns are expected at certain landmarks. In
industrial areas we expected a large proportion of trucks that
transport goods. Around central bus stations, we expected an
increased number of buses. In highly Jewish religious areas, little to
no traffic is expected during the Shabbat (Jewish weekly day of
rest). At the same time, we expected high traffic volumes around
popular recreational areas of the secular community. The ATV
dataset was tested against these assumptions.

To asses the reliability of truck volume estimates, the ratio of
truck to private vehicle volumes was compared between different
land-use types. Three polygon categories were extracted from

OpenStreetMap: residential, industrial and quarry areas. Industrial
and quarry polygons were considered industrial and compared as
one group against the residential polygons. A total of 323 industrial
and 1549 residential polygons were located. Of these, 227 industrial
and 1147 residential polygons had traffic in them according to the
ATV data. In each polygon, the ratio between the mean privates
volume and the mean trucks volume was calculated. The time
period chosen for this comparison was 9—12, as we expect trucks to
be at industrial locations during this time (and less so at night). The
statistical significance of the difference between the polygons with
different land-use categories was tested using a one-tailed Mann-
Whitney test.

Bus traffic is expected to be maximal in the immediate vicinity
of central bus stations (CBSs) and to decrease with increasing dis-
tance from them. Sixteen CBSs were selected and a 1.5 km buffer
area was constructed around them (less than half the distance
between the two most proximate CBSs). After filtering out grid cells
with no intersecting roads, the Spearman correlation between the
distance from the CBS centroid and the bus-to-total traffic volume
ratio was calculated. The Spearman coefficient was selected
because there was no reason to assume the relationship to be linear
or to have any other known characteristics, except monotony.

The Meah Shearim neighbourhood in Jerusalem is characterised
by an ultra-orthodox population, with virtually no traffic activity
during the Shabbat, from Friday evening until Saturday evening
(with the exact time varying throughout the year). In contrast, the
Tel-Aviv port area is a popular recreational area for the secular
community during Friday night. The temporal patterns of the ATV
data in both locations were compared and contrasted against the
aforementioned assumptions. The two locations are marked on an
interactive map, available as Supplementary information with the
on-line version of this article.

2.3. Use of ATV data as a proxy for traffic emissions

The optimised dispersion model (ODM) described by Yuval et al.
(2013) was used to estimate ambient NO, concentrations based on
the ATV data. This model uniquely combines proxies of traffic
emissions with ambient concentrations (measured at AQM sta-
tions) and meteorological data, and produces high-resolution
concentration maps. The concentration in each grid cell (G) is
modelled as a superposition of contributions from all the M grid
cells in the study area as follows:

LT (0)”
G=pi1+p SRYE 3)
i 1 Zj:Zl (Du+p4)p

where Tj is a proxy for vehicular nitrogen oxides emissions in the
jth cell (in this work it is the vehicle-type weighted ATV-based
volume); Dj; is the euclidean distance between the ith (receptor)
and jth (source) cells; 6 is the angle between the regional wind
vector and the connecting vector from the jth to the ith cell; f{6;) is
cos(0y) for 0 < 90" and zero otherwise; and pj_s are unknown
parameters which are optimised for a least-squares fit between the
measured and modelled concentration at each timepoint (i.e. for
every half hour). ODM should not be confused with more tradi-
tional atmospheric dispersion models (a recent description of these
was made by Leeldssy et al., 2014). Unlike ODM, these models
attempt to follow exactly atmospheric physics, using some ideal-
ised assumptions. Instead, the ODM scheme incorporates some
principals of pollutant transport and dispersion, in a simple and
closed form, such that the model parameters can be easily opti-
mised to fit the measured concentrations. For further details, see
Yuval et al. (2013).



354 S. Chen et al. / Atmospheric Environment 142 (2016) 351—-359

Table 1
List of OpenStreetMap road categories and their corresponding interpreted types and classes.
OpenStreetMap road category Interpreted type Assigned road class
Motorway, motorway link, trunk Freeway 5
Trunk link, primary, primary link, secondary Arterial 4
Secondary link, tertiary, unclassified Collector and distributor 3
Tertiary link, residential Local 2
Track, service, living street Services and access 1

Yuval et al. (2013) modelled NO, concentrations over a 25 km
wide coastal strip in central Israel. To compare our results with
those of Yuval et al. (2013), we modelled the same pollutant over
the same study area. Namely, the only difference from Yuval et al.
(2013) is the use of ATV traffic volume estimates (provided on a
spatial grid) rather than using traffic assignment model output
(that were provided for distinct road segments and were trans-
formed into gridded values). Twenty-two general monitoring sta-
tions were active in the study area during 2012 (near-road stations
were not included for reasons discussed in Yuval et al., 2013). The
monitoring data were obtained from the Technion Center of
Excellence in Exposure Science and Environmental Health's air
pollution monitoring data archive. The data pass quality assurance
and quality control processing before being released for use.

To use the traffic volume estimates as proxies of emissions, the
private and truck ATV traffic estimates were combined, taking the
emission from trucks to be 3.6 times higher than from private ve-
hicles (Pratt et al., 2014). The ODM was used to estimate NO
concentrations for all the half-hourly timepoints in 2012. Model
performance was assessed by a leave-one-out complete cross-
validation. Each half-hour was assigned the mean traffic volume
in the corresponding ATV time window (Section 3.1) (i.e. at 13:30
the assigned traffic was of 12:00—15:00). For time-points that are
exactly on the border between neighbouring time windows, the
traffic volume from the earlier window was used (i.e. the traffic at
15:00 was assumed to be that of 12:00—15:00), since the reported
monitoring data are averaged over the preceding half-hour. Due to
computation limitations, the original ODM study of Yuval et al.
(2013) was applied for in a 500 m x 500 m grid. To match the
resolution of the current work and enable fair comparison of the
two studies, the resolution of the ATV dataset had to be degraded.
Each 250 x 250 m? cell was approximated to have a uniform traffic
density, from which a sum was taken to the 500 x 500 m? cells.

Five statistics were used for assessing the quality of the results:
the mean bias (MB), the mean error (ME), the normalised mean
error (NME), the ratio of modelled values within a factor of two of
the observations (FAC2), and the coefficient of determination (R).

3. Results and discussion
3.1. ATV data validation

3.1.1. Daily patterns

Fig. 1 depicts a common daily pattern at the busy Ziv junction in
Haifa. A peak in private traffic is seen between 08:00—09:00 and a
smaller peak is visible between 15:00—18:00. Private traffic vol-
umes are much higher than truck volumes, which in turn are much
higher than bus volumes. Truck traffic peaks at midday
(12:00—15:00), while bus traffic peaks in the early morning
(06:00—08:00). This is the expected pattern in an urban area.

In order to quantitatively evaluate the ATV daily patterns, they
were compared to traffic counts in H20 from April 2011. Decell's
ATV data is provided on a spatial grid. Often, each grid cell includes
more than one road, so a perfect correlation between vehicle
counts on a specific road segment and the gridded ATV value

cannot be expected. In addition, Decell's data are yearly means and
counts from a specific week in April of a different year can
reasonably deviate from it somewhat. Still, the ATV data are very
similar to the traffic count data (Fig. 2). Different patterns can be
observed for Saturdays and for weekdays in both the traffic counts
and the ATV data.

3.1.2. Spatial patterns

Spearman correlations between ATV traffic volume estimates
and the highest road class (see Table 1) in each grid cell were 0.79,
0.75 and 0.78 in Haifa, Tel Aviv-Yafo and Lev Hasharon, respectively.
In all cases this correlation is statistically significant (p-
value < 1019), For Tel Aviv-Yafo, the trend is also displayed in a box
plot (Fig. 3).

Spatial linear correlations between the traffic volume of
different vehicle types in Tel-Aviv are shown in Table 2. The cor-
relations are consistently higher in the ATV database. In particular,
all the vehicle types have high correlations with each other (~0.9)
according to the ATV data, while the traffic counts show the highest
correlation between trucks and private vehicles, with relatively low
correlation between buses and private vehicles. We believe that the
generally higher correlations in the ATV dataset can be explained
by its: (a) much more coarse spatial separation (250 x 250 m? grid
cells as opposed to specific intersections); and (b) yearly averaging
of volumes (the counts are more sensitive to daily variations). Still,
the similarity between the correlations in the ATV data is striking
and may indicate bias in the estimation of bus volumes.

3.1.3. Traffic volume conservation

Variation of approximately 70% from the mean traffic volume
was observed along isolated road segments of H2, when using only
the grid cell in which the road segment actually passes (Fig. 4).
However, when accounting for the two adjacent cells (in the
transverse direction, perpendicular to the road), the deviation from
the mean traffic volume decreased to only 1—2%. Similar patterns of
decreased inconsistency of the traffic volume when including
adjacent cells were observed in most other road segments (Table 3).
It should be noted that the road with the highest deviations among
those tested was H70, which is the only east-west (rather than
north-south) road examined. Due to the morphology of Israel's road
network, it was difficult to find additional suitable east-west roads
for this test. H70 is also the highway with the lowest volumes
among the five. The adjacent cells have no roads intersecting them
and yet traffic is reported within them by the ATV database. Overall,
2.35% of the traffic in the ATV database is reported in cells that are
devoid of road segments.

3.1.4. Locations with known traffic patterns

Statistics of the truck-to-private ratio in residential and indus-
trial areas are shown in Table 4. The median ratio in industrial areas
is 1.4 times higher than in residential areas. The difference between
the medians is statistically significant (p-value < 10710).

Regarding bus traffic near CBSs, we report here only the results
for 7—8 AM. Similar results were obtained in the other time win-
dows. The bus traffic volume was negatively correlated with the
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Fig. 2. Comparison of traffic counts and ATV data for H20 on (a) Sunday and (b) Saturday.

distance from each of the 16 CBSs examined. This correlation was
statistically significant (p-value < 0.05) for exactly half (8) of the
CBSs. The correlations were generally weak, with most of the values
between 0 and —0.3. The very weak correlations, together with the
higher than expected correlation between buses and other types of
vehicles (Table 2) lead us to suggest that the quality of bus data is
questionable, thus we did not use the ATV bus volumes as input to
the ODM.

In general, the different daily patterns of the traffic volume
correspond well with the expected patterns. Specifically, in the
ultra-orthodox neighbourhood in Jerusalem a sharp decrease in
traffic volume is evident on Friday night, up until Saturday evening
(Fig. 5). In contrast, the Tel-Aviv port recreational area is charac-
terised by peak traffic in the late hours between Thursday and
Friday and between Friday and Saturday.
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Fig. 3. Box plot of ATV traffic estimates and highest road class in grid cells. The red
lines mark the medians, the blue horizonal lines mark the 25 and 75 percentiles and
the black whiskers represent the maximum and minimum non-outlier values of each
set. Outliers are defined as having a difference of more than 1.5 inter-quartile ranges
from the blue box and are marked by red +. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2

Spatial Pearson correlation coefficients between the different vehicle types in the
Tel-Aviv area in the ATV traffic volume data and among the traffic counts. Number of
observations is 395 in both cases.

Traffic data source Private-truck Private-bus Truck-bus
Counts 0.75 0.36 0.46
ATV 0.93 0.88 0.92

Traffic ratio to road mean

(@)

05 n n n n n n
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Distance from northmost grid point on segment (km)

Table 3

Traffic conservation in selected road segments from 5 different highways in terms of
the conservation measure Percentage Span From Mean (PSFM, see Section 3.1.3) and
its counterpart that accounts for traffic volume also in the adjacent cells (PSFMwA),
(%). Two daily time periods are reported (8—9 and 22—24).

Highway PSFM (8—9) PSFM (22—24) PSFMwA (8—9) PSFMwA (22—24)

H2 68 72 24 1.0

H4 29 42 22 33

H6 53 61 5.1 14

H34 6.1 4.5 25 5.0

H70 230 230 26 30
Table 4

Properties of the distributions of truck-to-private ratios in residential and industrial
grid cells. Columns are: number of observations (n), mean, median, standard devi-
ation (STD) and skewness.

Landuse type n Mean Median STD Skewness
Residential 1147 0.21 0.15 0.52 25.7
Industrial 227 0.48 0.21 1.32 6.99

with the exception of the mean absolute error. The model is slightly
biased towards concentration over-estimation. Fig. 6 shows the
change in coefficient of determination for an average day. The best
fit is achieved during the morning and afternoon rush-hour traffic
while poorer performance is observed at night. The poor perfor-
mance during periods of lower traffic (e.g. nights and vacations)
could indicate that either the traffic data is not as good during these
times or that the role of traffic in ambient NO; during these times is
lower. Notable NO, sources and processes not accounted for by the
ODM are industrial stacks and re-circulation.

Average NO, concentration maps for various times of day are
shown in Fig. 7. At the late night, relatively high concentrations are
visible near the coastline whereas in the morning the high con-

09 | }

Traffic ratio to road mean

0.6 A
()

05 n n n n n n
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Distance from northmost grid point on segment (km)

Fig. 4. (a) Ratio of traffic volume in a grid cell to the road segment mean traffic volume as a function of distance from the northernmost grid cell in the selected segment of H2 (n =5
grid cells) for 08:00—09:00 (red) and 22:00—24:00 (blue). (b) is like (a) but with ATV traffic volume in the 2 adjacent cells in the east-west (perpendicular to the road) direction
added to each cell. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2. Use of ATV data as a proxy for traffic emissions

Table 5 shows cross-validated performance measures of the
ODM in different periods of the week and of the year. The model
generally performs better when NO, concentrations are higher,

centrations are more inland and at midday the high concentrations
are limited to locations very proximate to the main roads. This
corresponds well with our understanding of meteorology in the
Israeli coastal plane and its dominant breeze cycle. At night, east-
erly winds prevail and carry pollutants towards the Mediterranean
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Fig. 5. ATV daily routine private traffic patterns at (a) the orthodox Jewish neighbourhood of Meah Shearim, Jerusalem and (b) a secular nightlife area in Tel-Aviv.

Table 5

ODM cross-validated performance measures for 6 temporal categories in 2012. The table provides the number of observation and modelled value pairs (n), the mean observed
concentration value (Mean), the mean bias (MB), mean error (ME), normalised mean error (NME), the ratio of modelled values within factor of two from their corresponding

observations (FAC2) and the coefficient of determination (R?).

Type of period Type of day n Mean (ppb) MB (ppb) ME (ppb) NME (%) FAC2 R?
Weekday 176,476 14.9 0.07 53 36 0.79 0.59

Routine (regular days) Friday 34,956 103 0.07 4.1 40 0.76 0.55
Saturday 34,596 8.3 0.08 3.6 44 0.73 0.52
Weekday 60,710 9.9 0.09 4.6 46 0.71 0.36

Vacation (Jewish holidays and summer) Friday 12,723 8.1 0.06 3.8 48 0.68 0.42
Saturday 12,493 7.0 0.18 4.4 63 0.60 0.06
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Fig. 6. Daily pattern of cross-validated coefficients of determination between ODM-
derived and measured ambient nitrogen dioxide concentrations. Data from all half-
hourly time-points and all monitoring stations is included.

while during the day on-land winds are observed. At mid-day,
photochemical reaction rates are the highest, causing the lowest
NO, concentrations away from main roads. For all time-points
there are extreme concentrations around coordinates (195,675),
which includes a segment of H6 that is reported by the ATV data-
base to have extremely high traffic.

4. Conclusions

The daily patterns captured by the ATV dataset agree with our
understanding of traffic patterns in Israel. The data are sensitive to
different traffic characteristics during workdays and weekends. The
very high correlation between the ATV data and the counts in
highway 20 is particularly important, as they were taken in a single
week in a different year than the ATV data were collected. This
shows that yearly mean ATV traffic data are useful for high-
resolution air quality modelling. The spatial patterns also fit well
with our expectations, showing higher traffic volumes in grid-cells
with primary roads intersecting them. Spatial patterns of truck
traffic also fit well to our expectations, with substantially higher
ratios of truck-to-private vehicle traffic in industrial areas. The use
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Fig. 7. Maps of NO; concentrations (ppb) for routine workdays (n = 194) obtained using the ODM for three time points: (a) 03:00, (b) 07:30, (c) 13:00. Color-coding is different for

each of the maps.

of OpenStreetMap layers to classify data points by land-use cate-
gories could be easily reproduced in other locations. In contrast to
trucks, the spatial patterns of bus volumes did not correspond with
our expectations and seems to have too high correlations with
private vehicle volumes. Hence, we chose not to use the bus data as
input to the ODM.

Testing traffic volume conservation along road segments is
complex due to the presence of several roads in each grid cell. In
our analysis we minimised this effect by focusing on highway
segments with only minor agricultural routes in the same grid cell.
We found scattering of vehicles volumes to adjacent cells. The
scattering is not uniform in space, as some locations suffer from
greater scattering around the highway. This inaccuracy of the ATV
data likely propagates errors when using them as a proxy of traffic
emissions in an air quality model. In particular, a substantial
exposure over-estimates may be attributed to individuals who live
short distances (few grid cells) away from a highway.

Using the ODM with either ATV data (the current work) or with
TA model output (Yuval et al., 2013) resulted in similar perfor-
mance. Yet, using ATV data has several advantages over using TA
model output, among them running the model for additional time
windows of the day, thus enabling a higher temporal resolution.
However, it should be noted that at times of low traffic (late night,
Saturdays and vacations) the model performed not as well as in
times of high trafficc. We believe that this result reflects other
contributions to NO, emissions, which in these periods become
more dominant than in hours and places with dense traffic. We are
currently improving the ODM to include point sources, which is
expected to mitigate this issue. Additional advantages of ATV traffic
signals over TA traffic estimates are their availability for wide areas
and varying road types (rather than just the main roads), and the
lack of need to convert line-segment (road) traffic into area sources
of emission.

In summary, we have shown that traffic volume estimates ob-
tained from ATV have value as an emission proxy for models that
calculate the spatio-temporal distribution of traffic-related air
pollutant concentrations. Though we showed this using one model
(ODM), we believe that our results are relevant for other air quality

models that can account for vehicular activity, including LUR and
CTM.
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