BASF We create chemistry

Chemistry for a Sustainable Future

Dr. Han Yu Asia Sales Team Lead Energy Storage BASF New Business

Our purpose:

We create chemistry for a sustainable future

BASF Corporate Commitments

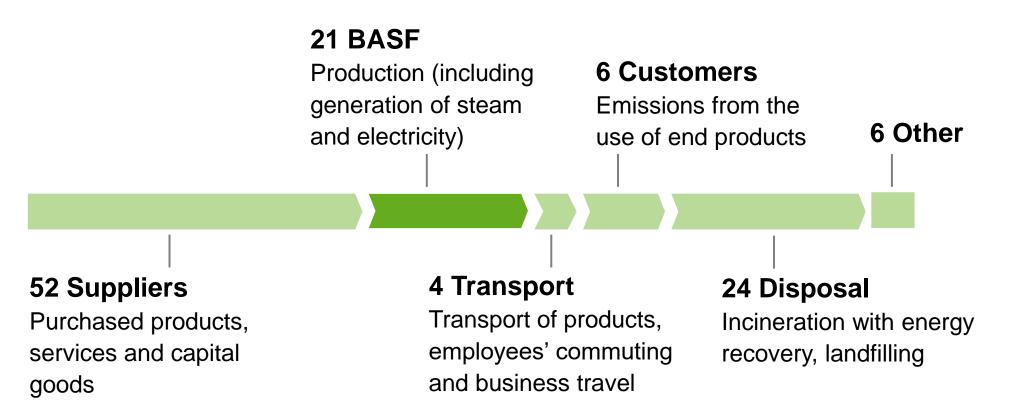
Our Corporate Commitments cover every part of our value chain and operations to deliver long-term business success.

Climate Protection Goal We aim to achieve net zero CO₂ emissions¹ by 2050. We want to reduce our absolute CO₂ emissions¹ by 25 percent by 2030.

¹ The goal includes Scope 1 and Scope 2 emissions without emissions from sale of energy to third parties. Other greenhouse gases are converted into CO₂ equivalents according to the Greenhouse Gas Protocol. **BASE**

Our way to net zero 2050

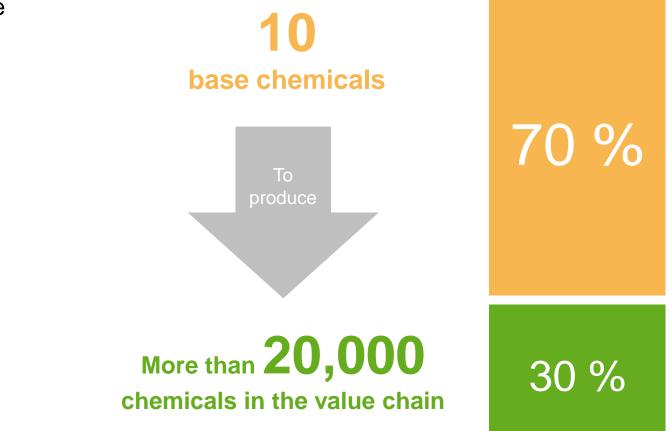
- We are a key enabler in the net zero transformation of base chemicals and downstream value chains
- Globally, we want to reduce our absolute CO₂ emissions by 25% by 2030 compared with 2018
- This means that, compared with 1990, we aim to reduce our global CO₂ emissions by 60% by 2030
- We aim to achieve net zero CO₂ emissions at BASF by 2050
- We are a front-runner in offering customers a portfolio of products with lower carbon footprints to enable their decarbonization



We assume responsibility along the entire value chain

Greenhouse gas emissions along the BASF value chain in 2020*

(in million metric tons of CO₂ equivalents)



Carbon Management

Carbon Management R&D Program: Base chemicals are in the focus of our research

Greenhouse gas emissions of the chemical industry in Europe

Process and energy related GHG emissions

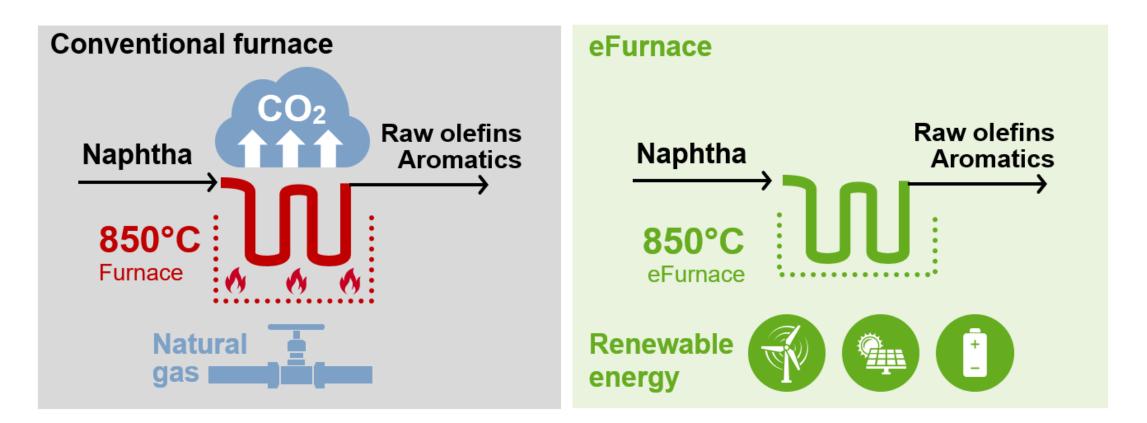
Source: JRC study : Energy efficiency and GHG emissions: Prospective scenarios for the Chemical and Petrochemical Industry 2017, Boulamanti A., Moya J.A.

8

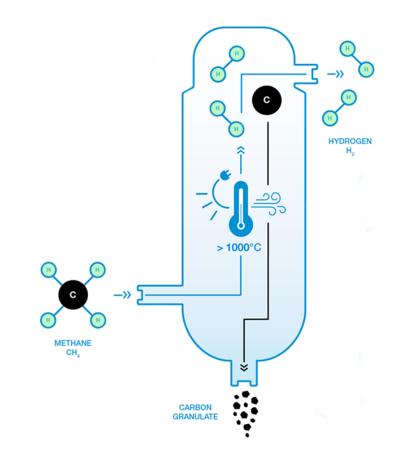
Carbon Management R&D Program: Breakthrough process technologies for key petrochemicals

Examples:

Methane pyrolysis for CO₂-free hydrogen


eFurnace for electrification of steam crackers

Dry reforming to produce syngas from methane and CO₂



Carbon Management R&D Program: Electrification of steam cracker furnace

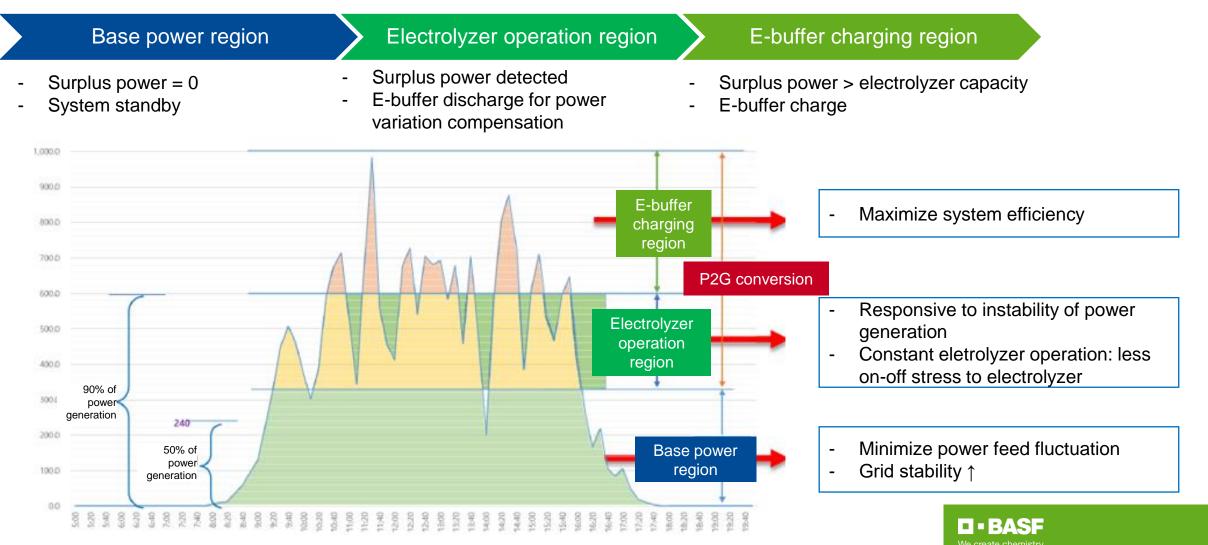
Carbon Management R&D program: Methane pyrolysis*

- We are continuously optimizing processes, gradually replacing fossil fuels with renewable energy and developing new lowemission technologies to futher reduce our overall CO₂ footprint.
- Methane pyrolysis is a low-emission technology. Electricity is used to heat methane and split it into its components: hydrogen gas and solid carbon.
- Methane pyrolysis requires around 80% less electricity than the alternative method of producing hydrogen using water electrolysis.
- Test plant at the Ludwigshafen site is being started up.
- If this energy comes from renewable sources, the process could be made carbon-free.

* Project sponsored by the Federal Ministry of Education and Research

SPONSORED BY TH

Green Hydrogen Projects in South Korea


- P2G Projects to produce green hydrogen from renewables. NAS[®] battery is used as energy buffer between wind turbines and electrolyzers.
- 500kW P2G Project, Jeju Island, Korea (2020): one NAS battery system (250kW/1.45MWh)

Wind turbine connected 500kW P2G system

: System Operation

Wind turbine connected 500kW P2G system

: Jeju Island, South Korea (2020)

- System configuration
 - Wind turbines: 21 MW (7 x 3 MW)
 - P2G system: 500kW
 - E-buffer (NAS battery): 1.2 MWh
 - Electrolyzer: 52 Nm₂/h
 - Fuel cell: 10 kW
 - Control: P2G-PMS by G-Philos
- NAS battery for P2G system
 - Large storage capacity
 - Safety: battery system next to H₂ tank

14

Increasing importance of renewable energy

- In 2020, internally generated power in the BASF Group had a carbon footprint of around 0.24 metric tons of CO₂ per MWh of electricity and was below the national grid factor at most BASF Group locations (purchased electricity: around 0.41 metric tons of CO2 per MWh)
- We are continuously optimizing processes, gradually replacing fossil fuels with renewable energy and developing new low-emission technologies to futher reduce our overall CO₂ footprint.
- In 2020, 19 BASF sites in Europe, North America and Asia already source partially or fully emission-free electricity from suppliers.
- Availability and price of renewable power as critical success factors.
- BASF is investigating different options for renewable power supply.

We create chemistry