

ETHIOPIA NATIONAL GREENHOUSE GAS INVENTORY FOR THE INDUSTRIAL PROCESSES AND PRODUCT USE SECTOR: 1990 - 2019

July 20, 2022

Prepared for: European Union Delegation to Ethiopia

Prepared by:

Dingane Sithole

Addisu Amare

Contract Number: FED/2019/412-677 The content of this report is the sole responsibility of the Consortium led by Stantec and can in no ways be taken to reflect the views of the European Union. This report is prepared solely for the use and benefit of the Contracting Authority. It is the result of an independent review, and neither the Consortium, nor the authors accept or assume any responsibility or duty of care to any third party.

This document was prepared by Stantec SA ("Stantec") for the account of European Union Delegation to Ethiopia (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Contents

1	Over	rview of sector	1
1	.1	Ethiopia industry overview	1
1	.3	Overview of GHG Emissions in 2017	2
1	.4	Overview of methodological issues	2
1	.5	Global warming potentials	2
1	.6	Trends in total IPPU GHG emissions	6
1	.7	Key categories	6
1	.8	Summary of methodologies	7
1	.9	Uncertainty assessment	9
1	.10	GHG emissions by source category	9
	1.10	.1 2 A Mineral Industry	9
	1.10	.2 2 B Chemical Industry	19
	1.10	.3 Metal Industry 2C	21
	1.10	.4 Non-Energy Products from Fuels and Solvent Use-2 D	
	1.10	.5 2 E Electronics Industry	
	1.10	.6 2 F Product Uses as Substitutes for Ozone Depleting Substances	
	1.10	.7 2 G Electrical Equipment	
	1.10	.8 Other product manufacture and use-2H	
1	.11	Status of Planned Improvements from SNC	33
1	.12	Precursor Emissions from IPPU Sector	33
2	Sum	mary	
3	Refe	rences	
4	ANN	EXES	
5	IPPL	J Sector QC checks	43

List of figures

Figure 1-1: Contribution by gas	5
Figure 1-2: Contribution by Sub Category	5
Figure 1-3: Total GHG emissions from IPPU from 1990 to 2019	6
Figure 1-4: CO ₂ emissions from Mineral industries -2A	10
Figure 1-5:CO ₂ emissions from cement production	11
Figure 1-6: CO ₂ emissions from Lime production	14
Figure 1-7: CO ₂ emissions from glass production	16
Figure 1-8: CO ₂ emissions from Ceramics	17
Figure 1-9: CO ₂ emissions from soda ash production	20
Figure 1-10: CO ₂ emissions from iron and steel	21
Figure 1-11: CO ₂ emissions from NEU of fuels	24
Figure 1-12: HFC emissions from foam blowing and fire protection	29
Figure 1-13: NMVOC emissions from food and beverages	32
Figure 1-14: Total NMVOCs emissions from IPPU	34
Figure 1-15: Total SO ₂ Emissions from IPPU	35
Figure 1-16: NMVOCs emissions from Lubricant Use (2D1)	35
Figure 1-17: NMVOC emissions from Iron and Steel Production	36
Figure 1-18: NMVOC Emissions from Glass Production	36

List of Tables

Table 1-1: Global warming potentials from the IPCC AR2	2
Table 1-2: GHG emissions in 2017 in units of Gg	3
Table 1-3: Key category in 2017 by level	7
Table 1-4: Key category by trend 2000 to 2017	7
Table 1-5: Summary of methodologies	7
Table 1-6: CO ₂ emissions comparisons	8
Table 1-7: Uncertainty assessment	9
Table 1-8: Cement production data	11
Table 1-9: Emission Factor for Cement production	12
Table 1-10: Clinker production data	12
Table 1-11: Lime production data	14
Table 1-12: Emission factor for lime production	15
Table 1-13: Lime emissions recalculations	15
Table 1-14: Glass production data	16
Table 1-15: Ceramics data in tonnes	18
Table 1-16: Soda Ash Production	20
Table 1-17: Steel production data	22
Table 1-18: Lubricant use data	24
Table 1-19: Paraffin Wax use	25
Table 1-20: Other non-energy fuels	26
Table 1-21: Activity data and emission factors for foam blowing	29
Table 1-22: Gases consumed in foam blowing	30
Table 1-23: Food and Beverages Industry	32

List of equations

Equation 1-1: NMVOCS	Food and beverages	. 32
----------------------	--------------------	------

Acronyms

AR2	IPCC Second Assessment Report
AR5	IPCC Fifth Assessment Report
CCIIDI	Chemical and Construction Industry Inputs Development Institute
CH₄	Methane
CKD	Cement Kiln Dust
СО	Carbon monoxide
CO ₂	Carbon dioxide
CORINAIR	Core Inventory of Air Emissions
CSA	Central Statistical Agency
EAF	Electric Arc Furnace
EF	Emission Factor
EFCCC	Environment, Forest and Climate Change Commission
ESED	Environment, Safety and Energy Directorate
FBI	Food and Beverages Industry
GCB	Gas circuit breakers
GHG	Greenhouse Gas
GIL	gas-insulated lines
GIS	Gas-insulated switchgear
GIT	Gas-insulated transformers
GWP	Global warming potentials
HAPs	hydrocarbon aerosol propellant
HFCs	Hydroflurocarbons
HFO-	Heavy fuel oil
INC	Initial National Communication
IPPU	Industrial Processes and Product Use
Kt	kilotonnes
MIDI	Metal Industry Development Institute
ΜΟΤΙ	Ministry of Trade and Industry
NA	Not Applicable
NE	Not Estimated
N ₂ O	Nitrous Oxide
NEUs	Non-Energy Use of Fuels

NMVOCs	Non-methane Volatile Organic Carbons
NOx	Nitrogen Oxides
ODU	Oxidation during use
OPC	Ordinary Portland cement
PFCs	Perfluorocarbons
PPC	Portland Pozzolana Cement
PPI	Pulp and Paper Industry
QA	Quality Assurance
QC	Quality Control
R & AC	Refrigeration and Air Conditioning
SF ₆	Sulphur hexafluoride
SNC	Second National Communication
SO ₂	Sulphur dioxide
TNC	Third National Communication

1 Overview of sector

1.1 Ethiopia industry overview

The Ethiopian manufacturing industry has been recently growing. The cement subsector has been one of the fastest growing owing to its key role in the growth of construction and infrastructure development in the country. During the last five years, the industry sector GDP (value added) has witnessed an annual average growth rate of 20%. Within the industry sector, medium and large-scale manufacturing industries registered average growth rate of 19.2% per annum and micro and small industries registered an average growth rate of 4.1% per annum. At the end of the Ethiopian growth and transformation plan period (2015-2020), the share of the industry sector in overall GDP reached 15.1% (manufacturing 4.8%, construction 8.5%, electric and water 1.0% and mining 0.8%). Some interventions have been proposed to reduce emissions coming from the sector in the coming years. According to the updated 2021 NDC these interventions will reduce emission levels to 22.6Mt CO₂eq in 2030 in the conditional pathway (FDRE, 2021). One of the policies implemented by the Ethiopian Government to mitigate process related emissions in the cement sector is clinker substitution while saving from increased nitrogen use efficiency.

1.2 Overview of the GHG Emissions

In Ethiopia, Greenhouse Gas (GHG) emissions from Industrial Processes and Product Use (IPPU) are mainly generated from mineral industries, although there are a wide variety of industrial activities. Cement production is the main source of GHGs from mineral production. The other sources include lime production, glass production and ceramics. The main ceramics produced include clay bricks, as well as floor and wall tiles. Data on soda ash production was only available for 2006 to 2019. From iron and steel production (2C1), the only source of GHG reported was from secondary steel production from electric arc furnaces. Ethiopia does not currently produce primary steel and ferrochrome. The emissions from non-energy use of fuels (2D) mainly came from the use of waxes and petroleum jelly. The manufacture of electronics (2E) does not occur in Ethiopia. GHG emissions from the ozone depleting chemicals substitutes, foam blowing (2F2) and fire protection (2F3) were reported in the TNC (Third National Communication). Although activity data on refrigeration and air conditioning equipment imported and manufactured locally was compiled, the emitted GHGs could not be calculated since data on the gases charged in the equipment were not provided. The GHG emissions from manufacture and use of electrical equipment were not reported owing to data unavailability. Although the methodology for estimating NMVOCs from food and beverages (2H2) is not provided in the 2006 IPCC Guidelines, the EMP/EMEP 2019 emissions guidebook was used to calculate the GHGs. The main gas, therefore, reported was carbon dioxide (CO₂). Hydrofluorocarbons (HFCs) from foam blowing and fire extinguishers were only reported for the years from 2000.

The main data sources were the Central Statistical Agency (CSA), The Ethiopian Customs, the Chemical and Construction Industry Inputs Development Institute (CCIIDI), Metals Industries Development Institute (MIDI) and EFCCC. The emission factors were obtained from the 2006 IPCC Guidelines (IPCC, 2006), except for those for food and beverages that were obtained from EMEP/EEA Guidelines for 2019 (EMEP/EEA, 2019).

1.3 Overview of GHG Emissions in 2017

In 2017 a total of 4769.76 Gg of greenhouse gas (GHG) emissions were emitted from the industrial processes and product use sector in Ethiopia. The bulk of these emissions were from mineral industry contributing 3835.75Gg followed by Non-energy Products from fuels and solvent use contributing 808.81Gg and lastly metal industry with 43.03Gg .Looking into the Mineral Industry the most dominating production was cement production with 3567.84Gg, Lime production with 246.17Gg and Glass Production with 1.24Gg.This information is depicted in Table **1-2**.

1.4 Overview of methodological issues

In the Initial National Communication (INC), the GHG emissions were reported for the year 1994 and the Revised 1996 IPCC Guidelines were used. Tier 1 methodologies were used for the INC and Second National Communication (SNC). In the SNC, tier 1 methodology was also used for all categories, owing to data unavailability. However, the GHG emissions for cement production from the SNC were not available and it was not possible to recalculate the GHG emissions for the whole time series. The Global Warming Potentials (GWP) from the Intergovernmental on Climate Change (IPCC) Second Assessment report (AR2) (IPCC, 1995) was used in the TNC.

In the SNC the estimated emissions were for the years 1994 to 2013 and covered the production of cement, lime glass and soda ash. In the TNC most data covered the years 1990 to 2019.

1.5 Global warming potentials

Table 1-1 presents the 100-year time horizon GWP relative to CO₂. This table is adapted from the IPCC AR2.

Name of gas	Chemical formula	Global warming potential (GWP)
Carbon dioxide	CO ₂	1
Methane	CH ₄	21
Nitrous oxide	N ₂ O	310
Hydrofluorocarbons	HFC-245fa (CHF2CH2CF3)	1030

Table 1-1: Global warming potentials from the IPCC AR2

Source; (IPCC, 1995)

	(Gg)			CO ₂ Equivalents (Gg)						
Categories	CO ₂	CH ₄	N ₂ O	HFCs	PF Cs	SF ₆	NOx	со	NMVOC s	SO ₂
2 - Industrial Processes and Product Use	4688.40	0.00	0.00	81.36	0.00	0.00			1909.59	0.00 26
2.A - Mineral Industry	3835.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00005	0.00
2.A.1 - Cement production	3567.84	NE	NA	NA	NA	NA	NE	NE	NE	0.00
2.A.2 - Lime production	246.17	NE	NA	NA	NA	NA	NE	NE	NE	NÊ
2.A.3 - Glass Production	1.24	NE	NA	NA	NA	NA	NE	NE	0.00005	NE
2.A.4 - Other Process Uses of Carbonates	20.50	NE	NA	NA	NA	NA	NE	NE	NE	NE
2.A.4.a - Ceramics	20.50	NE	NA	NA	NA	NA	NE	NE	NE	NE
2.A.4.b - Other Uses of Soda Ash	NE	NE	NA	NA	NA	NA	NE	NE	NE	NE
2.A.4.c - Non-Metallurgical Magnesia Production	NO	NO	NA	NA	NA	NA	NO	NO	NO	NO
2.A.4.d - Other	NO	NO	NA	NA	NA	NA	NO	NO	NO	NO
2.A.5 - Other	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B - Chemical Industry	0.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.B.1 - Ammonia Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.2 - Nitric Acid Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.3 - Adipic Acid Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.4 - Caprolactam, Glyoxal and Glyoxylic Acid Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.5 - Carbide Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.6 - Titanium Dioxide Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.7 - Soda Ash Production	0.81	NE	NE	NA	NA	NA	NE	NE	NE	NE
2.B.8 - Petrochemical and Carbon Black Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.a - Methanol	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.b - Ethylene	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.d - Ethylene Oxide	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.e - Acrylonitrile	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
2.B.8.f - Carbon Black	NE	NE	NE	NA	NA	NA	NE	NE	NE	NE
2.B.9 - Fluorochemical Production							NE	NE	NE	NE
2.B.9.a - By-product emissions (4)	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO
2.B.9.b - Fugitive Emissions (4)	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO
2.B.10 - Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2.C - Metal Industry	43.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	80.68	0.00
	43.03	NE	NE	NA	NA	NA	NO	INE NO	80.68	
2.C.2 - Ferroalioys Production	NO	NO	NO	NA	NA	NA	NO	NO	NO	NO
	NO	NO	NA	NA	NO	NA	NO	NO	NO	NO
2.C.4 - Magnesium production	NO	NA	NA	NO	NO	NO	NO	NO	NO	NO
2.C.5 - Lead Production	NO	NA	NA	NA	NA	NA	NO	NO	NO	NO
2.C.6 - Zinc Production	NO	NA	NA	NA	NA	NA	NO	NO	NO	NO
2.C.7 - Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2.D - Non-Energy Products from Fuels and Solvent Use	808.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00000 42	0.00
2.D.1 - Lubricant Use	0.13	NA	NA	NA	NA	NA	NE	NE	0.00000	NE
2.D.2 - Paraffin Wax Use	5.68	NE	NE	NA	NA	NA	NE	NE	NE	NE
2.D.3 - Solvent Use	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE
2.D.4 - Other (Asphalt and Bitumen)	803.00	NE	NE	NA	NA	NA	NE	NE	NE	NE
2.E - Electronics Industry										
2.E.1 - Integrated Circuit or Semiconductor	NO	NA	NO	NO	NO	NO	NO	NO	NO	NO
2.E.2 - TFT Flat Panel Display	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO

Table 1-2: GHG emissions in 2017 in units of Gg

	(Gg)			CO ₂ Equivalents (Gg)						
Categories	CO ₂	CH ₄	N ₂ O	HFCs	PF Cs	SF ₆	NOx	со	NMVOC s	SO ₂
2.E.3 - Photovoltaics	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO
2.E.4 - Heat Transfer Fluid	NA	NA	NA	NA	NA	NA	NO	NO	NO	NO
2.E.5 - Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2.F - Product Uses as Substitutes for Ozone Depleting Substances	0.00	0.00	0.00	81.36	0.00	0.00			0.00	0.00
2.F.1 - Refrigeration and Air Conditioning										
2.F.1.a - Refrigeration and Stationary Air Conditioning	NE	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.F.1.b - Mobile Air Conditioning	NE	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.F.2 - Foam Blowing Agents	NE	NA	NA	2.78	NE	NA	NE	NE	NE	NE
2.F.3 - Fire Protection	NE	NA	NA	78.58	NE	NA	NE	NE	NE	NE
2.F.4 - Aerosols	NA	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.F.5 - Solvents	NA	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.F.6 - Other Applications	NE	NE	NE	NE	NE	NA	NE	NE	NE	NE
2.G - Other Product Manufacture and Use										
2.G.1 - Electrical Equipment										
2.G.1.a - Manufacture of Electrical	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.1.b - Use of Electrical Equipment	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.1.c - Disposal of Electrical Equipment	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.2 - SF6 and PFCs from Other Product Uses	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.2.a - Military Applications	С	С	С	С	С	С	С	С	С	С
2.G.2.b - Accelerators	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.2.c - Other	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE
2.G.3 - N2O from Product Uses	NA	NA	NE	NA	NA	NA	NE	NE	NE	NE
2.G.3.a - Medical Applications	NA	NA	NE	NA	NA	NA	NE	NE	NE	NE
2.G.3.b - Propellant for pressure and aerosol products	NA	NA	NE	NA	NA	NA	NE	NE	NE	NE
2.G.3.c - Other	NA	NA	NE	NA	NA	NA	NE	NE	NE	NE
2.G.4 - Other	NE	NE	NA	NE	NA	NA	NE	NE	NE	NE
2.H - Other	NE	NE	NE	NA	NA	NA	NE	NE	1828.91 2	NE
2.H.1 - Pulp and Paper Industry	NE	NE	NA	NA	NA	NA	NE	NE	NE	NE
2.H.2 - Food and Beverages Industry	NE	NE	NA	NA	NA	NA	NE	NE	1828.91 2	NE
2.H.3 - Other	NE	NE	NE	NA	NA	NA	NE	NE	NE	NE

In 2017, CO_2 emissions accounted for the bulk (98.29%) of the GHG emissions from IPPU. HFCs contributed below 2%. Figure 1-1 presents the contribution by gas to IPPU GHG emissions in 2017.

Figure 1-1: Contribution by gas

GHG emissions contribution by Sub Category

Figure 1-2 presents GHG emissions by sub category in the IPPU sector for the year 2017. About 79% of the emissions were from the Mineral Industry (2A) sub category mainly due to cement production which is the largest emitting Industry in Ethiopia while the least emissions were from the Metal Industry (2C) amounting to 1% of the total emissions.

Figure 1-2: Contribution by Sub Category

1.6 Trends in total IPPU GHG emissions

There was a steady rise in GHG emissions from just above 380ktCO₂eq in 2000 to 4769.76ktCO₂eq in 2017. The steady rise in CO₂ emissions since 2006 was largely driven by the growth in industry activities, mainly cement production. Cement and ceramics production were the main sources of GHG emissions from 1990. The increase in the number of cement companies in response to the accelerated growth in the construction industry largely contributed to the increase in CO₂ from the cement sector. From 2000 to 2006 cement production was the main source of GHGs, contributing over 90% of the emissions during that period. The use of fuels for non-energy purposes has also contributed to the GHG emissions from IPPU for the period 2007 to 2019. GHG emissions from iron and steel remained below 1% for the whole time series. Fire suppression chemicals use also contributed to the GHG emissions, accounting for a small fraction of GHG emissions throughout the time series. Emissions from the IPPU sector for the whole time series are presented in Figure 1-3.

Figure 1-3: Total GHG emissions from IPPU from 1990 to 2019

The graph shows a gradual increase in GHG emission from 1990 up to 2005 as the emissions remained below the 1000Gg mark. A sharp increase in GHG emissions was observed from 2006 up to 2018 followed by a decline in 2019. The change from 1990 to 2019 level indicates approximately 99% increase in GHG emissions.

1.7 Key categories

Key category analysis was performed for the IPPU sector for the purpose of demonstration. Key categories from IPPU should, therefore, be identified once the full inventory including all sectors has been compiled. In 2017 cement production, non-energy products from fuels and solvent use, as well as lime production were the key categories by level, with cement contributing the bulk of the GHG emissions at 74.81%, followed by Non-Energy Products from Fuels with 16.96%. The key category by level is shown in **Table 1-3**.

IPCC Category code	IPCC Category	Greenhous e gas	2017 Ex,t (Gg CO₂Eq)	Ex,t (Gg CO2Eq)	Lx,t	Cumulati ve Total of Column F
2.A.1	Cement production	CO ₂	3567.84	3567.8 4	74.81%	74.81%
2.D	Non-Energy Products from Fuels and Solvent Use	CO ₂	808.81	808.81	16.96%	91.77%
2.A.2	Lime production	CO ₂	246.17	246.17	5.16%	96.94%
2.F.3	Fire Protection	HFCs, PFCs	78.58	78.58	1.65%	98.58%
2.C.1	Iron and Steel Production	CO ₂	43.03	43.03	0.90%	99.49%
2.A.4	Other Process Uses of Carbonates	CO ₂	20.50	20.50	0.43%	99.92%
2.F.2	Foam Blowing Agents	HFCs (HFCs)	2.78	2.78	0.06%	99.97%
2.A.3	Glass Production	CO ₂	1.24	1.24	0.03%	100.00%

Table 1-3: Key category in 2017 by level

When considering key categories by trend, cement production remains the main contributor to the trends in GHG emissions between 2000 and 2017. The key category by trend is shown in Table 1-4.

IPCC Category code	IPCC Category	IPCC Category Greenhouse gas 2000 Year Estimate Ex0 (Gg CO2eq)		2017 Year Estimate Ext (Gg CO ₂ eq)	Trend Assessment (Txt)	% Contribution to Trend
2.A.1	Cement production	CO ₂	343.40	3567.84	0.06	0.87%
2.D	Non-Energy Products from Fuels	CO ₂	0.21	808.81	0.03	0.38%
2.A.2	Lime production	CO ₂	6.07	246.17	0.01	0.10%
2.A.4	Other Process Uses of Carbonates	CO ₂	25.68	20.50	0.00	0.05%
2.F.3	Fire Protection	HFCs, PFCs	6.09	78.58	0.00	0.02%
2.C.1	Iron and Steel Production	CO ₂	0.41	43.03	0.00	0.02%
2.A.3	Glass Production	CO ₂	7.69	1.24	0.00	0.02%
2.F.2	Foam Blowing Agents	HFCs	0.38	2.78	0.00	0.00%

Table 1-4: Key category by trend 2000 to 2017

1.8 Summary of methodologies

Tier 1 methodology was used on all categories due to data availability issues. The summary of the methodologies used is presented in Table 1-5.

Table 1-5: Summary of methodologies

		Emis	Emission Factor									
IPCC source category	Activity data source	CO ₂	CH₄	N₂O	HFCs	PFCs	SF6	NOx	со	NMVOCs	SO ₂	
2.A - Mineral Industry												
2.A.1 - Cement production	CCIIDI, CSA	D	NE	N/A	N/A	N/A	N/A	NE	NE	NE	D	
2.A.2 - Lime production	CSA	D	NE	N/A	N/A	N/A	N/A	NE	NE	NE	NE	
2.A.3 - Glass Production	CSA	D	NE	N/A	N/A	N/A	N/A	NE	NE	D	NE	
2.A.4.a - Ceramics	CSA	D	NE	N/A	N/A	N/A	N/A	NE	NE	NE	NE	
2.B.7 - Soda Ash Production	CCIIDI	D	N/A	N/A	N/A	N/A	N/A	NE	NE	NE	NE	

		Emis	sion Fa	actor							
IPCC source category	Activity data source	CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF6	NOx	со	NMVOCs	SO ₂
2.C - Metal Industry											
2.C.1 - Iron and Steel Production	CSA	D	NE	NE	N/A	N/A	N/A	NE	NE	D	NE
2.D.1 - Lubricant Use	CSA, Customs	D	N/A	N/A	N/A	N/A	N/A	NE	NE	D	NE
2.D.2 - Paraffin Wax Use	CSA, Customs	D	NE	NE	N/A	N/A	N/A	NE	NE	NE	NE
2.D.3 - Solvent Use	NE	NA	N/A	N/A	N/A	N/A	N/A	NE	NE	D	NE
2.D.4 - Other (please specify)	CSA, Customs	D	NE	NE	N/A	N/A	N/A	NE	NE	NE	NE
2.F.2 - Foam Blowing	Ozone	NE	NA	NA	D	NE	NA	NE	NE	NE	NE
2.F.3 - Fire Protection	Ozone	NE	NA	NA	D	NE	NA	NE	NE	NE	NE
2.F.4 - Aerosols	NE	NE	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.F.5 - Solvents	NE	NE	NA	NA	NE	NE	NA	NE	NE	NE	NE
2.G - Other Product Manufacture and Use	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2.H.2 - Food and Beverages Industry	National from CSA	NE	NE	N/A	N/A	N/A	N/A	NE	NE	D	NE

D- Default, NA- Not Applicable, NE- Not Estimated, NO- Not Occurring,

In 1994, in the INC, Ethiopia reported 310 Gg of CO₂, 2.3Gg of NMVOCs and 0.2Gg of SO₂. In the SNC in 2013, IPPU contributed 1,757.9984Gg CO₂eq, accounting for 1% of the national totals. The recalculated GHGs are presented in Table 1-6 **Table 1-6: CO2 emissions comparisons**. There was decrease of over 45% in the total recalculated GHG emissions for INC, whereas the recalculated GHG emissions for SNC increased by over 78%. The INC and SNC used the Revised 1996 IPCC Methodologies while in the TNC the 2006 IPCC methodologies were used. The number of categories reported increased from one in the INC, to three in the SNC and then 5 in the TNC.

Table 1-6: CO₂ emissions comparisons

	Reported in the INC	Reported in the SNC	Recald	ulated in the TNC	TNC	% Difference (TNC-INC)	% Difference TNC-SNC)
	1994	2013	1994	2013	2017		
2. Industrial Processes	310	1,757.	167.81	3127.83	4768.95	-45.87%	78.02%
2.A - Mineral Industry	310	917.17672	165.55	2084.882523		-46.60%	127.32%
2.B - Chemical Industry	0	0.1820915	0.0	0.0		0.0	-100.00%
2.C - Metal Industry	0	840.6396	0.71	17.7687136	43.0315536	0.0	-97.89%
2.D - Non-Energy Products from Fuels and Solvent Use (6)	0		0.00	883.9653513	808.8105671	0.0	0.0
2.E - Electronics Industry	NO	NO	NO	NO	NO		
2.F - Product Uses as Substitutes for Ozone Depleting Substances	NE		1.69	70.12736098	81.36		
2.G - Other Product Manufacture and Use	NE						
2.H - Other	NE						
					1		

1.9 Uncertainty assessment

Uncertainty assessment was done using error propagation and the calculations were done in the software. The results of the analysis are shown in

Table **1-7**. Activity data uncertainty was obtained from the data providers while default emission factor uncertainties were obtained from the 2006 IPCC Guidelines and computed in the IPCC GHG inventory software. Cement production had the highest contribution to IPPU uncertainty.

2006 IPCC Categories	Gas	200 0 emi ssio or rem oval s (Gg CO ₂ eq)	201 7 emi ssio or rem oval s (Gg CO ₂ eq)	Activ ity Data Unce rtaint y (%)	Emis sion Fact or Unce rtaint y (%)	Com bine d Unce rtaint y (%)	Contr ibutio n to Varia nce by Cate gory in 2017	Typ e A Sen sitivi ty (%)	Typ e B Sen sitivi ty (%)	Contr ibutio n of emis sion facto r unce rtaint y (%)	Contr ibutio n of activi ty data unce rtaint y (%)	Unce rtaint y intro duce d into the trend in total natio nal emis sions (%)
2.A - Mineral Industry												
2.A.1 - Cement production	CO ₂	343 .40	356 7.8 4	2.50	0.00	2.50	0.00	0.2 1	0.1 2	0.00	0.42	0.18
2.A.2 - Lime production	CO ₂	6.0 7	246 .17	1.00	0.00	1.00	0.00	0.0 1	0.0 1	0.00	0.01	0.00
2.A.3 - Glass Production	CO ₂	7.6 9	1.2 4	5.00	0.00	5.00	0.00	0.0 0	0.0 0	0.00	0.00	0.00
2.C - Metal Industry	CO ₂											
2.C.1 - Iron and Steel Production	CO ₂	0.4 1	43. 03	2.00	0.00	2.00	0.00	0.0 0	0.0 0	0.00	0.00	0.00
2.D - Non-Energy Products from Fuels and Solvent Use	CO ₂											
2.D.1 - Lubricant Use	CO ₂	0.0 0	0.1 3	10.0 0	0.00	10.0 0	0.00	0.0 0	0.0 0	0.00	0.00	0.00
2.D.2 - Paraffin Wax Use	CO ₂	0.0 0	5.6 8	10.0 0	0.00	10.0 0	0.00	0.0 0	0.0 0	0.00	0.00	0.00
2.D.4 - Other (please specify)	CO ₂	0.2 1	803 .00	0.00	0.00	0.00	0.00	0.0 3	0.0 3	0.00	0.00	0.00
2.F - Product Uses as Substitutes for Ozone Depleting Substances												
2.F.2 - Foam Blowing Agents	CH2 FCF 3	0.0 0	0.0 0	0.00	0.00	0.00	0.00	0.0 0	0.0 0	0.00	0.00	0.00

 Table 1-7: Uncertainty assessment

1.10 GHG emissions by source category

1.10.1 2 A Mineral Industry

The total GHG emissions from IPPU for the period 1990 to 2019 were dominated by CO_2 emissions from Mineral Industry (2A). The CO_2 emissions from mineral industry increased from around 72.85Gg in 1990 to 3205.99Gg in 2019 (Figure 1-4). Cement production was the main source of the CO_2 emissions owing to the dominance and recent growth of the cement industry in Ethiopia. CO_2 emissions from lime production are the second to cement. There has been an increase in CO_2 emissions from the non-energy use of fuels since 2007.

Paraffin waxes and petroleum jelly use were the main drivers for the CO₂ emissions from the non-energy use of fuels.

Figure 1-4: CO₂ emissions from Mineral industries -2A

The graph shows a gradual increase in CO_2 Emissions from 1990 to 2010 though characterized with some spikes in 1996 and 2006. From 2011 to 2017 there was a sharp increase in the CO_2 Emissions followed by a gradual decline in 2018 to 2019. An increase of about 99.0% from 1990 CO_2 emissions levels to the 2017 levels were noted.

1.10.1.1 2 A 1 Cement Production

Cement production is the major contributor of GHG emissions from IPPU in Ethiopia. The number of companies has been growing rapidly in recent years resulting in a corresponding steady rise in GHGs from cement production. Close to 100% of the clinker is produced locally. The emissions from cement production since 1990 are shown in Figure 1-5. The steady rise in emissions since 2011 is attributed to the increased cement output owing to the increase in cement companies from 2000 to 2018. In 2018, the cement industry started to mitigate CO₂ emissions from the industry by reducing clinker in Portland Pozzolana Cement (PPC) from 78% clinker to 70% which resulted in a decrease in GHGs from 2018 to 2019.

Figure 1-5:CO₂ emissions from cement production

The graph indicates a steady increase in CO_2 emissions in cement production from 1990 to 2010 marked by some spikes in 1996 and 2006. A sharp rise was experienced from 2011 to a peak of 3761.05Gg CO_2 eq representing about 99% increase from the 1990 figure of 47.47Gg CO_2 eq. In the year 2019, there was sharp decline of about 14.7%.

a. Methodological issues

Only tier 1 methodology was used. Clinker production data was obtained from CCIIDI for the years 2017 to 2019. In that case, Tier 2 data was available for one year in the cement sector, making it impossible to apply it in the calculations for the whole time series.

b. Activity data

Table 1-8: presents data for OPC and PPC cement production (in million tonnes) from 1990 to 2019. Data for 1990 to 1992 were missing and the gaps were filled by trend extrapolation.

Year (G.C)	Domestic Cement pro	duction in million tons	
	OPC	PPC	TOTAL
1990/1	0.03	0.09	0.11
1991/2	0.03	0.09	0.11
1992/3	0.06	0.18	0.24
1993/4	0.09	0.28	0.38
1994/5	0.11	0.35	0.46
1995/6	0.15	0.46	0.61
1996/7	0.44	0.51	0.66
1997/8	0.189	0.59	0.77
1998/9	0.191	0.59	0.78
1999/2000	0.188	0.58	0.77
2000/1	0.199	0.62	0.82
2001/2	0.199	0.62	0.82
2002/3	0.19	1.15	1.34
2003/4	0.28	1.14	1.42

Table 1-8: Cement production data

Year (G.C)	Domestic Cement pro	duction in million tons	
	OPC	PPC	TOTAL
2004/5	0.25	1	1.25
2005/6	0.57	2.18	2.75
2006/7	0.3	1.42	1.72
2007/8	0.28	1.38	1.66
2008/9	0.33	1.36	1.69
2009/10	0.32	1.3	1.62
2010/11	0.54	2.18	2.72
2011/12	0.93	2.8	3.76
2012/13	1.12	3.63	4.73
2013/14	1.22	4.25	5.47
2014/15	1.4	5.46	6.86
2015/2016	1.63	6.53	8.16
2016/2017	1.71	6.82	8.52
2017/2018	1.68	6.72	8.41
2018/2019	1.64	6.58	8.23
2019/2020	1.66	6.67	8.33

Source; (CCIIDI, 2021)

Clinker production for PPC used a 0.78 clinker fraction from 1990 to 2017, however, for 2018 and 2019, the clinker fraction reduced to 0.70 due to the introduction of Pumice in clinker production, a measure to reduce emissions from cement production.

Table 1-9: Emission Factor for Cement production

Parameter		Source	Comment
Clinker production	0.93-OPC 0.78-PPC (1990 to 2017) 0.70 -PPC (2018 and 2019)	CCIIDI	
Emission factor	0.51	Default	Default emission factor was applied
CKD correction factor	1.02		

Table 1-10: Clinker production data

YEAR	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
PPC	66436.	96284.85	139543.2	222197.37	273645.3	359006.5	396260.6	456473.7	461197.8	451910.6
	548	19	64	58	92	19	78	89	08	37
OPC	24815.	35964.20	52122.04	82994.912	102211.7	134095.7	148010.8	170501.5	172266.0	168797.1
	3042	9	2	55	17	09	4	74	84	5

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
480611.242	1107600	219618362	889200	780000	1700400	1107600	1076400	1060800	1014000
9,000	90,000	171,000	252,000	252,000	513,000	270,000	252,000	297,000	288,000

2010	2011	2012	2013	2014	2015	2016	2017	2018	2019

1700400	2184000	2831400	3315000	4258800	5093400	5319600	5241600	4606000	4669000
486,000	837,000	2,541,000	2,541,000	1,098,000	1,467,000	1,260,000	1,467,000	1,539,000	1,539,000
Sources: (CSA 2021) and (CCIIDI 2021)									

Sources; (CSA, 2021) and (CCIIDI, 2021)

The emission factor for CO_2 emissions was obtained from the 2006 IPCC Guidelines. Cement kiln dust is recycled and the average recycling ration as provided by the CCIIDI (CCIIDI, 2021) and cement kiln dust correction factor (CKD). Parameters for cement production GHG emissions are presented in Table 1-9.

c. Uncertainties

The activity data uncertainty was given as 25% from the CCIIDI for the years 2017 to 2020, and was applied for the whole time series. Default emission factor uncertainty of zero (0%) obtained from 2006 IPCC Guidelines was used.

Time series consistency and Category-specific Recalculations

In the both the SNC and TNC, GHG emissions from cement were calculated using tier 1 methodology. Emissions calculations were performed for the years 1990 to 2019. There was no available activity data from the SNC for comparison.

d. Category-specific QA/QC and Verification

OA/OC Activity	Commont
QA/QC ACTIVITY	Comment
Compare emissions estimated using different	Tier one was used due to the unavailability of
tiers.	clinker fraction data and no comparisons were
	done.
Compare aggregated national emission factors	National emission factors are not yet
with the IPCC default factors in order to determine	developed
if the national factor is reasonable relative to the	
IPCC default.	
Review inconsistencies between sites to establish	Not carried out during the current inventory
whether they reflect errors, different measurement	cycle.
techniques, or result from real differences in	
emissions, operational conditions or technology.	

e. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Cement data was missing for the years 1991,	Collect clinker data for the years from 1990 to
1992 and 2001. Cement production data for 2001 was interpolated while that for 1990 to 1992 was	2017 and calculate GHG emissions for 1990 to 2019 using tier 2
extrapolated. Clinker production data was	
unavailable from 1990 to 2016	
Tier 2 methodology could on be applied for the	Calculate GHG for the whole time series using
years 2017 to 2019 due to clinker data availability.	tier 2.
Default Cement Kiln Dust (CKD) value used from	Collect data on CKD from the individual plants
IPCC Guidelines	and calculate the CKD value for the country.

1.10.1.2 2 A 2 Lime Production

This section covers CO_2 emissions from lime production. The two types of lime produced from Ethiopia are high calcium and dolomitic lime. Activity data on lime production was obtained from the CSA (CSA, 2021). It was, therefore, assumed that the lime production data from CSA included both marketed and non-marketed lime, since the data was obtained from census of industrial manufacturers.

Figure 1-6: CO₂ emissions from Lime production

 CO_2 emissions from Lime production were fluctuating below 11Gg CO_2 eq for the period 1990 to 2012 and there was a sharp increase in 2013 of about 87% from the 2004 peak of 10.26Gg CO_2 eq to around 83.69Gg CO_2 eq. A sharp decline in the emission levels was experienced in 2014 followed by a steady increase up to 2016. In 2017 there was a sharp increase to a triple digit figure of 246.17Gg CO_2 eq thus about 99% change from the 1990 level.

a. Methodological issues

The Tier 1 methodology was used to calculate CO_2 emissions from lime production. The decision tree for estimation of CO_2 emissions from lime production in Figure 2.2 in section 2.3.1.1 in Chapter 2 of Volume 3 of the 2006 IPCC guidelines was applied. The activity data is presented in Table 1-11. The IPCC default emission factors on lime production Activity data was applied on high calcium lime and hydraulic lime.

b. Activity data

Table 1-11 below presents data on high calcium lime and hydraulic lime production in tonnes from 1990 to 2017.

Type of Lime Produced	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
High calcium	1249.01	1357.62	1475.68	1475.68	1091.52	1978.93	2890.00	2940.13	2654.21	2772.11
lime	6	6	0	0	2	5	7	2	9	3
	1865.73	2027.97	2204.32	2204.32	1630.47	2956.06	4316.99	4391.86	3964.78	4140.88
Hydraulic lime	6	4	0	0	8	5	3	8	1	7

Table 1-11: Lime production data

Type of Lime Produced	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	3,718.4	3,424.1	3,129.8	4,223.3	6,287.2	4,751.8	7,098.1	1,788.8	1,631.2	1,535.4
High calcium lime	7	4	1	3	8	5	5	6	7	3
	5,554.5	5,114.8	4,675.2	6,308.6	9,391.7	7,098.1	4,876.4	2,672.1	2,436.7	2,293.5
Hydraulic lime	3	6	0	7	2	5	6	4	3	7

Type of Lime Produced	2010	2011	2012	2013	2014	2015	2016	2017
High calcium lime	1,304.85	994.88	2,254.02	51,299.93	7,122.96	9,331.27	21,417.01	304,709.07
Hydraulic lime	1,949.15	1,486.12	3,366.98	76,630.07	27,119.00	40,615.00	56,446.00	29,888.00

Source; (CSA, 2021)

The default emission factors from the IPCC Software Version 2.691 taken from table 2.4 in Section 2.3.1.2 in Chapter 2 of the 2006 IPCC Guidelines Volume 3 (Table 1-12).

Table 1-12: Emission factor for lime production

Emission factor	Source	Comment
0.75 (High calcium lime)	IPCC Default, T1	Default emission factor was
0.59 (hydraulic lime)	IPCC Default, T1	applied

c. Uncertainties

The activity data uncertainty of 1% was obtained from the CCIIDI. IPCC default emissions factor uncertainties value of 0% were used.

d. Time series consistency and category-specific Recalculations

Recalculations were performed for the whole time series. However, GHG emissions for years in between the reporting year were not available. Hence, the comparisons were only done in the reporting years as presented in the table (Table 1-13) below.

Table 1-13: Lime emissions recalculations

	Reported in the INC	Reported in the SNC	Recalc	ulated in the TNC	TNC	% Difference (TNC-INC)	% Difference TNC-SNC)
	1994	2013	1994	2013	2017		
Lime production	310	1,757.	167.81	3127.83	4768.95	-45.87%	78.02%

The differences were largely attributed to improvement in the source categories covered in the latest inventory, compared to the previous ones.

e. Category-specific QA/QC and Verification

Lime production data from CSA was compared with that from CCIIDI for the years in which both sources had data.

QA/QC Activity	Comment
Compare between emissions estimated following	Tier one was used. Available data was not
the Tier 2 approach based on lime production	appropriate for tier 2 or 3, hence no comparison
and Tier 3 approach based on carbonate input.	was made.
Confirm the correct definitions of the different	The definitions from CSA were used.
types of lime produced in the country.	
Consider industries that may produce non-	Only data from CSA was used.
marketed lime to ensure that these data have	
been included in the activity data for the inventory	

f. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Although Lime production is a key category, the	Collect plant specific data on lime production and
GHG emissions from lime production were	calculate GHG emission using tier 2 or higher
calculated using tier 1.	since lime production is a key category.
Data on lime production was not complete in	Confirm the correct definitions of the different
order to determine whether other types of lime,	types of lime produced in the country.
besides high calcium and hydraulic, were being	Consider industries that may produce non-
produced	marketed lime to ensure that these data have
	been included in the activity data for the inventory

1.10.1.3 2 A 3 Glass Production

According to the data provided by CSA, flat glass and glass bottles are produced in Ethiopia. The cullet ratio used in glass production was 0.4.

Figure 1-7: CO2 emissions from glass production

The CO₂ emissions in glass production from 1998 up to 2001 were hovering around 7Gg CO₂eq. There was a sharp decline in CO₂ emissions in the period from 2001 up to 2015 with intermittent spikes in between followed by a sudden increase in 2016 of about 48% from the 1998 level. In 2017, a sharp decline to about 1.24Gg CO₂eq was experienced in the emissions.

a. Methodological issues

Tier 1 methodology was used following Figure 2.3 decision tree in section 2.4.1.1 of Volume3 Chapter 2 in the 2006 IPCC Guidelines. Tier 1 applies a default emission factor and cullet ratio to national-level glass production statistics using Equation 2.10.

b. Activity data

Glass and glass bottles activity data was combined and GHG emissions obtained by computing in the IPCC Software Version 2.691. Table 1-14 shows data for glass production from 1998 to 2019. Details of bottles and glass produced, as well as the conversions done are presented in **Error! Reference source not found.** and Annex B. The default emission factor of 0.21kg CO₂/tonne of glass produced was obtained from the 2006 IPCC Guidelines section 2.4.1.2 of Chapter 2, Volume 3. A cullet ratio of 0.4 was used.

Year											
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Productio	59928.	49837.7	61013.9	31908.8	2803.	600.3	3778.0	3329.	7741.	8467.	4717.
n (mt)	38	1	6	3	7	4	3	65	82	12	67
Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Productio	4628.9						7454.9	11538			
n (mt)	9	3891.3	19680	7988	4133		2	3	9822		0

Table 1-14: Glass production data

Source; (CSA, 2021)

c. Uncertainties

The uncertainty of 5% was obtained from default. A cullet ratio of 0.4 was used.

Time series consistency and Category-specific Recalculations

Recalculations were performed for 1998 to 2019. There was no data from the SNC to compare with for recalculations. Emissions figures were only available for reporting years.

d. Category-specific QA/QC and Verification

QA/QC Activity	Comment
Emissions estimated using a Tier 3 approach could be compared with the results using a Tier 2 approach to see if the results are of a similar order of magnitude.	Not performed since tier 1 method was used.
Consideration of the cullet ratio	Default cullet ratio of 0.4 was used.

e. Category-specific Planned Improvements

Constraint/gap	Planned improvement
A default cullet ratio of 0.4 was used	Determine the national average cullet ratio and use it for calculating GHGs from glass production in Ethiopia.

1.10.1.4 2 A 4 Other Process Uses of Carbonates

GHG emissions reported under this category were from production of ceramics 2A4.a. The GHG emissions covered the production of clay bricks, floor and wall tiles.

Figure 1-8: CO₂ emissions from Ceramics

The graph depicts a declining trend in CO_2 emissions since 1990 up to 2017 with a spike in 2007. The decline of CO_2 emissions from 23.34Gg CO_2 eq in 1990 to 20.50Gg CO_2 eq in 2017 represents about 12% increment.

1.10.1.5 2 A 4 a Ceramics

The section presents CO_2 emissions from the production of bricks, as well as wall and floor tiles were reported.

a. Methodological issues

The Tier 1 methodology was used based on Equation 2.14 in section 2.5.1.1 of Volume3 Chapter 2 of the 2006 IPCC Guidelines.

b. Activity data

Activity data under ceramics was from cement floor tiles and clay bricks from 1998 to 2017, and was obtained from the CSA (Table 1-15). Data for 2001 were missing and the gap was filled by trend interpolation. Activity data for cement floor tiles from the CSA were presented in square metres (m²). The data was converted to density by multiplying by 20kg, which is the average density of a SQ.M of ceramic tiles¹. The total was converted to tonnes for entry into the IPCC Software Version 2.691 entry by dividing by 1000 and multiplied by 1.1 (an IPCC default figure for losses).

The units used for clay bricks data were 1000 pieces (PCS). The data was multiplied by 1000 to get the actual number of PCS of bricks, which was then converted to density through multiplying by1.88, which is the average weight (in kgs) of standard clay bricks². The total was converted to tonnes for entry into the IPCC Inventory software through dividing by 1000 and then multiplied by 1.1 to cover for loses (an IPCC default for loses).

1 4 5 1 6 1			aata m							
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Cement										
floor tiles	8,103.	7,494.3	12,124.	8,501.9	4,879.6	8,710.1	5,405.3	10,689.	20,966.	10,247.
	22	4	35	9	2	5	1	10	24	14
Clay										
bricks	40,923	40,139.	41,674.	43,699.	45,725.	43,347.	29,642.	51,255.	28,730.	92,971.
	.65	88	34	94	55	35	71	38	72	08

Table 1-15: Ceramics data in tonnes

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Ceme	6,319.6			9,102.0	17,084.	4,182.4	19,728.	13,719.	127,088.	24,092.
nt	5			8	45	6	76	88	21	93
floor		2,477.5	4,380.0							
tiles		5	2							
Clay	28,763.			38,067.	28,902.	2,979.9	25,277.	2,177.6	8,942.03	18,858.
bricks	81	27,063.	36,489.	74	37	9	16	0		09
		92	86							

Source; (CSA, 2021)

c. Emission factor for tiles and clay bricks

Emission factor	Source	Comment
0.47732	IPCC Default	Default emission factor for
		dolomite was applied

d. Uncertainties

Default figures in the IPCC software were used, that is +/-5% for activity data and 0 for the EFs.

e. Time series consistency and Category-specific Recalculations

Emissions from ceramics were not estimated in earlier inventories, hence no recalculations were performed.

f. Category-specific QA/QC and Verification

¹Source; https://www.tiles.org.uk/wp-content/uploads/2018/07/TTA-Tiling-Guide-Brief-guidance-on-the-use-of-adhesives.pdf).

²Source; https://www.ijert.org/research/laboratory-investigation-of-locally-produced-clay-brick-quality-and-suitability-for-load-bearing-element-in-jimma-area-ethiopia-IJERTV6IS050526.pdf

QA/QC Activity	Comment
Emission estimates derived from any Tier to be	Only tier 1 was used
Compared with the other fields	Data wana aktaina difarm 000 alant ana sijia
Compare plant specific information with industry	Data were obtained from CSA, plant specific
association statistics.	data were not available.
Examine trends in activity data over time to see	
if there may be large fluctuations year to year,	
as there may be large year to year fluctuations	
in these statistics.	

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
The category specific QA/Qc plan was not	Develop and implement a category specific
in place	QA/QC plan

1.10.1.6 2 A 4 b Other Uses of Soda Ash

Emissions from the use of soda ash besides that in other processes were not reported. The data on the specific processes and quantities were not available. It was, therefore assumed that data reported as raw material use by the CSA was used in other processes.

1.10.2 2 B Chemical Industry

This section covers GHG emissions from soda ash production. The following activities do not occur in Ethiopia:

- B 1 Ammonia Production
- B 2 Nitric Acid Production
- B 3 Adipic Acid Production
- B 4 Caprolactam, Glyoxal and Glyoxylic Acid Production
- 2 B 5 Carbide Production
- 2 B 6 Titanium Dioxide Production
- 2 B 8 Petrochemical and Carbon Black Production
- 2 B 8 a Methanol Methanol production
- 2 B 8 b Ethylene Ethylene production
- 2 B 8 c Ethylene Dichloride and Vinyl Chloride Monomer production
- 2 B 8 d Ethylene Oxide Ethylene oxide production.
- 2 B 8 e Acrylonitrile Acrylonitrile production
- 2 B 8 Petrochemical and Carbon Black Production
- 2 B 8 a Methanol Methanol production
- 2 B 8 b Ethylene Ethylene production
- 2 B 8 c Ethylene Dichloride and Vinyl Chloride Monomer production
- 2 B 8 d Ethylene Oxide Ethylene oxide production.
- 2 B 8 e Acrylonitrile Acrylonitrile production
- 2 B 9 Fluorochemical Production 2E HFCs,
- B 10 Other

1.10.2.1 2 B 7 Soda Ash Production

In Ethiopia Soda ash (sodium carbonate, Na₂CO₃) is produced through natural processes from sodium sesquicarbonate (trona).

a. Methodological issues

The Tier 1 methodology was used, based on Equation 2.14 in section 2.5.1.1 of Volume3 Chapter 2 the 2006 IPCC Guidelines. Data was only available at National level, and no plant specific data was available.

b. Activity data

Data for the production of soda ash provided by the CCIIDI only covered the years 2016 to 2019 (Table *1-16*).

Table	1-16:	Soda	Ash	Production

Period (EFY)	Year	Production I capacity
2008	2016	4800
2009	2017	5850
2010	2018	6503
2011	2019	2933
2012	2020	1531

Source: (CCIIDI, 2021)

c. Emission for soda ash production

CO₂ emissions from soda ash production were only reported for 2016 to 2019, since activity data was only available for these years. The emissions ranged from 0.28Gg in 2019 to the highest of 0.81Gg produced in 2017.

Figure 1-9: CO_2 emissions from soda ash production

Generally the CO_2 emissions from Soda Ash Production declined over the period of 2016 to 2019. Despite the spike in 2017, the 2019 figure of 0.28Gg CO_2 eq represents about 40% decline in emissions from 2016 level.

d. Uncertainties

Default uncertainties of +/-5% for activity data and 0% for EFs were used.

e. Time series consistency Category-specific Recalculations

GHG emissions from the production of Soda ash were reported since the INC. However, for the TNC inventory cycle, the activity was only available for the years 2016 to 2020. Tier 1 methodology was use in the INC, SNC and TNC.

f. Category-specific QA/QC and Verification

No category specific QA/QC activities were performed. There were no other sources to compare with for the years where CCIIDI provided data.

g. Category-specific Planned Improvements

Activity data for soda ash production was only available for the years 2016 to 2019, although the production of soda ash has been happening in Ethiopia since 1990. There is need to collect soda ash production data for the whole time series and calculate GHG emissions from soda ash production.

1.10.2.2 2 B 8 f Carbon Black production

Activity data on production of carbon black was not available, hence GHG emissions from this category were not estimated.

1.10.3 Metal Industry 2C

1.10.3.1 2 C 1 Iron and Steel Production

 CO_2 is the predominant gas emitted from the production of steel. Emissions reported from metal industry were from the secondary production of steel in electric arc furnaces. There was no primary production of metals in Ethiopia for the reporting period. Figure 1-10 presents the CO_2 emissions from steel production for the entire time series.

Figure 1-10: CO₂ emissions from iron and steel.

Since 1993 the CO_2 Emissions were almost constant and started to increase sharply in 2005 reaching a peak in 2017, dropping suddenly in 2019 to 2018. The change of emissions from the 1993 level to the 2019 level represents 99%.

a. Methodological issues

Tier 1 methodology was used in accordance with the IPCC decision tree in Figure 4.7 for CO_2 emissions in section 4.2.2.2 of Volume 3 of the 2006 IPCC Guidelines (IPCC, 2006).

b. Activity data

Table 1-17 presents quantities of rebar (in metric tonnes) produced from 1990 to 2019. However, there was no data of different processes of making rebars from different companies. Hence, the main assumption is that all rebars were made through electrical furnace process. The data was obtained from MIDI- Environment, Safety and Energy Directorate (ESED). Data for 2001 were missing and the gap was filled by trend interpolation. The quantities of rebar produced for the whole time series are presented in Table 1-17.

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Re bar (mt)	791.294	1515.8 88	2904	5518	8920	9449	1159	8512	6203	5357
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Re bar (mt)	5,078.00	5,713. 62	1,082.8 8	5,487.92	6,570.80	10,610.5 0	42,242.7 1	53,326.7 5	12,596.8 4	78,290.6 2
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Re bar (mt)	106,599. 19	51,995 .49	153,484 .78	230,363. 21	222,108. 92	393,173. 67	483,752. 64	537,894. 42	402,717. 19	398,794. 20

Table 1-17: Steel production data

Source: (MIDI-ESED, 2021)

c. Emission factor for steel

The IPCC default EF for the electric Arc Furnace (EAF) for steel making of 0.08 tonne CO_2 per tonne of steel produced was used, taken from Table 4.1 in section 4.2.2.3 of the 2006 IPCC Guidelines Volume 3.

d. Uncertainties

The activity data default figure of 2% was provided by MIDI. The IPCC default uncertainty for EF was 0% and was obtained from IPPC software.

e. Time series consistency Category-specific Recalculations

Recalculations were performed for the whole time series and the difference between the recalculated figure and the one reported in the SNC was -97.89%. However, data used in the SNC was not available, hence it was not possible to identify the source of the error.

f. Category-specific QA/QC and Verification

QA/QC Activity	Comment

Review of emission factors and carbon contents.	Default data was used and no
Compare aggregated national emission factors and	comparison were made.
carbon contents with the IPCC default factors carbon	
contents in order to determine if the national value is	
reasonable relative to the IPCC default.	
Explanation on differences between national default	
values to be explained and documented, particularly if	
they are representative of different circumstances.	
Review of inconsistencies between sites to establish	Activity data was obtained from the
whether they reflect errors, different measurement	CSA and MIDI.
techniques, or result from real differences in emissions,	
operational conditions or technology.	
To include key industrial trade organisations associated	
with iron and steel production in a review process. This	MIDI already involved and plans
process should begin early in the inventory development	underway for MIDI to be responsible
process to provide input to the development and review of	for collecting all data on steel
methods and data acquisition	production.
Involving third party reviews for this source category,	
particularly related to initial data collection, measurement	
work, transcription, calculation and documentation.	

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
It was assumed that all metals were made from the electric arc furnace process	Conduct survey on steel making companies to establish the quantities of steel produced from the different processes in Ethiopia.
	Develop and implement a system for collection of activity data by MIDI

Primary production of metals was not occurring in Ethiopia, hence the following activities were reported as NO;

- i. C 2 Ferroalloys production
- ii. C 3 Aluminum production
- iii. C 4 Magnesium production
- iv. C 5 Lead production
- v. 2 C 6 Zinc production
- vi. 2 C 7 Other (please specify)

1.10.4 Non-Energy Products from Fuels and Solvent Use-2 D

This section presents CO_2 emissions from the use of oil products and coal-derived oils primarily intended for purposes other than combustion. The data was obtained from the Customs department and covered the years from 2007 to 2019. The emissions from 2D had a lot of inconsistencies owing to data gaps.

Figure 1-11: CO2 emissions from NEU of fuels

The CO_2 emissions from none-energy use of fuels increased from 2007 to 2010. From the period of 2011 to 2012 the emissions were declining, however an upward trend was noticed from 2013 onwards.

1.10.4.1 2 D 1 Lubricant Use

Lubricating oils, heat transfer oils, cutting oils and greases.

a. Methodological issues

Tier 1 methodology was used to calculate CO_2 emissions, following Equation 5.2, in accordance with Figure 5.2 decision tree for estimation of CO_2 emissions from non-energy uses of lubricants, section 5.2.2.1 of Volume 3 Chapter 5 of the 2006 IPCC guidelines. The default tier methodology was used.

b. Activity data

Table 1-18 presents data of Lubricant use from 2007 to 2019. Data was obtained from imports. Activity Data for Preparations for lubricating materials, with <70% petroleum oil was combined with Other lubricating preparations, with <70% petroleum oil, However, 2008 activity data for Other lubricating preparations, with <70% petroleum oil was missing.

Table 1-18: Lubricant use data

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Preparations for lubricating materials, with <70% petroleum oil (TJ)	5.72	6.74	5.70	13.43	5.15	10.68	6.56	6.47	3.70	3.36	3.71	4.65	3.14
Other lubricating preparations, with <70% petroleum oil (TJ)	5.15	No data	15.00	9.22	2.81	1.08	2.98	2.34	5.49	4.89	5.17	5.35	4.12

Source; (Customs, 2021)

c. Emission for Lubricant use Emissions Factors

Emission factor	Value	Source	Comment
ODU Factor	0.2	2006 IPCC GLs	Default emission factor was
		Default	applied
Net calorific value for wax	40.3	2006 IPCC GLs	
(TJ/Gg)		Default Volume 2,	
		Table 1.2 Chapter 1	

d. Uncertainties

Activity data uncertainties were 10% while that for EFs was 0% obtained from the 2006 IPCC Guidelines (IPCC, 2006) were used.

e. Time series consistency

Recalculations were not performed since the emissions from 2D were not estimated in the SNC

f. Category-specific QA/QC and Verification

QA/QC Activity	Comment
Check the consistency of the total annual consumption figure with the production, import and export data.	Comparison with data from petrochemicals-CCIIDI

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Data was not complete for the whole time series and products. Data on lubricants were not complete	Collect all data, including lubricants, and calculate GHG emissions from non-energy use of fuels, considering that the category is key.

1.10.4.2 2 D 2 Paraffin Wax

The CO₂ emissions from the use of all waxes uses, except for energy purposes, were reported under this section. The waxes included paraffin and other waxes with less than 70% wax content. Other Oil-derived waxes such as petroleum jelly, paraffin waxes and other waxes were also included.

a. Methodological issues

The Tier 1 methodology was used, following Figure 5.3 decision tree for estimation of CO2 emissions from non-energy uses of paraffin waxes, in section 5.3.2.1 of Volume 3 Chapter 5 of the 2006 IPCC guidelines (IPCC, 2006). CO2 emissions were calculated according to Equation 5.4 with aggregated default data for the limited parameters available.

b. Activity data

Table 1-19 presents Activity data from paraffin wax use from 2007 to 2019. The data was obtained from industry and customs. Vaseline activity data presented was from 2011 to 2017.

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Paraffin wax, containing <0.75% oil	77.15	79.35	69.26	95.00	124.82	138.22	160.72	177.36	244.45	193.22	197.42	182.35	260.64
Vaseline					0.0020	0.0023	0.0003	0.0079	0.0012	0.0010	0.1468		
Petroleum jelly Imports	157.32	123.65	119.31	76.62	123.67	106.89	134.41	106.20	196.77	91.35	153.72	114.28	187.13
Other paraffin wax and similar products, nes	41.39	21.68	39.12	35.18	48.71	37.88	56.28	92.34	61.61	82.30	29.54	50.85	103.26

Table 1-19: Paraffin Wax use

c. Paraffin wax Emissions Factors

The default ODU factor of 0.2 was obtained from the 2006 IPCC Guidelines. The calorific value used was 40.2 TJ/Gg, taken from Table 1.3 in Chapter of the 2006 IPCC Guidelines Volume 2.

d. Uncertainties

Default uncertainties of 10% from the IPCC Software Version 2.691 were used.

e. Time series consistency

Category-specific Recalculations

Recalculations were not performed since the emissions from 2D2 were not estimated in the SNC.

f. Category-specific QA/QC and Verification

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Data used was from imports since that	Collect production and import data for
provided by Petrochemical Department	paraffin wax uses
were not complete	

1.10.4.3 2 D 3 Solvent Use

NMVOC emissions from solvent use, for example in paint application, degreasing and dry cleaning were not reported since the activity data was not available.

1.10.4.4 2 D 4 other (please specify)

This section covers the NMVOC emissions from asphalt production and use. Asphalt is applied on roads and as roofing material.

a. Methodological issues

Calculations were done in the IPCC default methodology provided in Section 5.4 of the 2006 IPCC Guidelines (IPCC, 2006).

b. Activity data

Table 1-20 presents Activity data on various non-energy fuels used. Bituminous or oil shale and tar sands, Bitumen and asphalt; natural asphaltites and asphaltic rocks and Bituminous mixtures based on natural asphalt, bitumen.

Table 1-20: Other non-energy fuels

	2007	2008	2009	2010	2011	2012
Bituminous or oil shale and tar sands	214.89	523.25	806.39	1054.85	1508.38	140.65
Bitumen and asphalt; natural asphaltites and asphaltic rocks	1921.72	2720.95	2602.65	3362.38	1913.44	2285.52
Bituminous mixtures based on natural asphalt, bitumen.	257.36	1365.29	1019.03	1475.70	409.89	426.83

	2013	2014	2015	2016	2017	2018	2019
Bituminous or oil shale and tar sands	98.26	70.16	53.71	197.51	258.18	2.82	200.46
Bitumen and asphalt; natural asphaltites and asphaltic rocks	3629.06	3725.00	2666.04	2918.23	2470.12	2858.53	2069.63
Bituminous mixtures based on natural asphalt, bitumen	1104.32	596.43	2004.16	2160.35	1286.71	2058.86	1591.70

Source: (CSA, 2021)

c. Other non-energy fuels emissions Factors

The default ODU factor of 0.2 was obtained from the 2006 IPCC default software.

d. Uncertainties

Default uncertainties of 10% for activity data and 05 for EFs from the IPCC Software Version 2.691 was used

e. Time series consistency

The IPCC default methodology was used for the whole time series

Category-specific Recalculations

Recalculations were not performed since the emissions from 2D were not estimated in the SNC.

f. Category-specific QA/QC and Verification

QA/QC Activity	Comment
Check the consistency of the total annual consumption figure with the production, import and export data.	Production figures were not available and imports figures were used.

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Activity data was not available for the whole time series, covering only years from 2007 to 2013	Collect activity data from 1990 to 2006 and calculate GHG emissions for the whole time series.

1.10.5 2 E Electronics Industry

Emissions from the Electronics industry (2E) were not occurring in Ethiopia. The only activities that occur pertain to the assembly of the components. Hence, the following were reported as NO:

- > 2 E 1 Integrated Circuit or Semiconductor
- > 2 E 2 TFT Flat Panel Display
- > 2 E 3 Photovoltaics
- > 2 E 4 Heat Transfer Fluid
- > 2 E 5 Other (please specify)
- > 2E6 other halogenated gases

1.10.6 2 F Product Uses as Substitutes for Ozone Depleting Substances

The most commonly used ODS alternatives in Ethiopia include HFC-134a, and HFC-245fa. Other HFCs are mostly used as components of blends used mainly in the refrigeration and air conditioning, foam and aerosol sectors. The three dominant HFC blends currently used are R-404A, R-410A and R-407C. In Ethiopia the dominant task is maintenance where gas filling is the common practice in air condition and refrigeration sector. The main substance used in refrigeration sector is HFC-134A widely used for domestic refrigeration. Furthermore, R-404A, R-407C and few amount of R-12, R-13b is used in this sector. In Ethiopia the major refrigerator gas used by technician to maintain refrigerators is HFC-134a. Other blends and R-717 are also used specially in small and medium industries. Basically the air condition and refrigerator sector consume such gases during maintenance and other technical processes.

The aerosol sector is also found in a better stage for its use of HAPs which are considered the best replacement of the ODS aerosols.

The three dominant HFC blends currently used are R-404A, R-410A and R-407C.

1.10.6.1 2 F 1 Refrigeration and Air Conditioning

GHG emissions from both mobile and stationary air conditioning were not estimated owing to data constraints. Quantities of manufactured regenerators were obtained from MIDI while the imported refrigerators quantities were obtained from the Customs department. However, the details on the gases in the new equipment were not provided. The report on the survey conducted by the Ozone secretariat provided quantities of ODS substitutes in use, without giving further details. The data on the six sub-applications (2006 IPCC Guidelines Section 7.5.1) was not provided. The required applications are:

- a Domestic refrigeration,
- b Commercial refrigeration including different types of equipment, from vending machines to centralised refrigeration systems in supermarkets,
- c Industrial processes including chillers, cold storage, and industrial heat pumps used in the food, petrochemical and other industries,
- d Transport refrigeration including equipment and systems used in refrigerated trucks, containers, reefers, and wagons,
- e Stationary air conditioning including air-to-air systems, heat pumps, and chillers for building and residential applications,
- f Mobile air-conditioning systems used in passenger cars, truck cabins, buses, and trains.

The available activity data could not be used for 2006 IPCC Approach A or B.

The survey reports states that maintenance of mobile air conditioning system and industrial chillers is indeed occurring and that typical gases used in this industry are R-717, R-404A, R-407C and other unclassified gases such as R-22, R-502, R-503, R-393, R-394. The report further indicates that domestic air conditioning uses R-22 and it was the development of this substance that facilitated the development of small scale efficient air conditioning units suitable for residential applications while room air conditioners use small air conditioning units suitable for comfort cooling of a single room or enclosed small commercial space. The calculation of GHG emissions from the use of ODS substitutes in refrigeration and air conditioning will be addressed through the planned improvement in the TNC.

1.10.6.2 2 F 2 Foam Blowing Agents

In the foam sector HFO-1234ze, HFO-1233zd and HFC-245fa are extensively used in Ethiopia. The processes and applications for which these various HFCs are being used include insulation boards and panels, pipe sections, sprayed systems and component gap filling foams. For open-cell foams, such as integral skin products for automotive steering wheels and facias, emissions of HFCs used as blowing agents are likely to occur during the manufacturing process.

HFC Emissions were on a steady increase trend from 1990 up to 2019. The change in emissions from 1990 levels of 0.10Gg CO₂eq to 84.7Gg CO₂eq in 2019 represents about 99% increase.

a. Methodological issues

Tier methodology was used and calculations performed in the IPCC Software Version 2.691. Equation 7.8 from Section 7.4.2.1 from the 2006 IPCC Guidelines Volume 3 Chapter 7 was employed.

a. Activity data and emission factor for foam blowing

Activity data was obtained from the Survey on ODS conducted by the Ozone Secretariat in 2018 (Table 1-21).

Subsecto r/ applicati on	Alternativ								
	es		2012	2013	201 4	2015	First year losse s	Annu al loss	Lifetim e (years)
Rigid PU	HFO-	C ₃ H ₂ Cl	19.5	20.0	45.2	56.9	10	4.5	
Spray	HFC-245fa	$C_3H_3F_5$	3.32	6.65	12.9	13.23	15	1.5	50

Table 1-21: Activity data and emission factors for foam blowing

Source; (Secretariat, 2018)

The default emission factors of 15 in the first and 1.5% in the subsequent years was used, obtained from the 2006 IPCC Guidelines.

b. Uncertainties

Default uncertainties in the IPCC software of 0% for both activity data and emissions factor were used.

c. Time series consistency

Recalculations were not performed since these were not reported in the SNC.

d. Category-specific QA/QC and Verification

e. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Data obtained from Ozone Secretariat only	Conduct survey to collect data covering the
covered the years 2012 to 2015	years 1990 to current and calculate GHG
	emissions for the whole time series.

1.10.6.3 2 F 3 Fire Protection

This section presents GHG emissions from the use of ODS substitutes in fire suppression. The data obtained from the Ozone secretariat covered the use of R-744 (CO₂).

a. Methodological issues

Tier 1 methodology from the 2006 IPCC Guidelines was used as outlined in Section 7.6.2.1 of Volume 3 Chapter 7 of the 2006 IPCC Guidelines.

b. Activity data

Activity data was obtained from the Ozone Secretariat and is presented in Table 1-22.

Table 1-22: Gases consumed in foam blowing

Application	Alternative	2012	2013	2014	2015
Fire	R-744 (CO ₂)	0.12	0.095	0.47	1.04
Extinguisher	Other(hydrant)	1.5	15.99	11.18	8.13

c. Emission factor for fire protection

d. Uncertainties

Default uncertainties in the IPCC software were used

e. Time series consistency

Category-specific Recalculations

Recalculations were not performed since these were not reported in the SNC

f. Category-specific QA/QC and Verification

Conduct general QA/QC procedures in section 7.6.4.1 in Chapter 7 Volume 3 of the IPCC Guidelines	
Conduct expert review of the emissions estimates	

g. Category-specific Planned Improvements

Constraint/gap	Planned improvement
Data obtained from Ozone Secretariat only covered the years 2012 to 2015.	Conduct survey to collect data covering the years 1990 to current and calculate GHG emissions for the whole time series.

1.10.6.4 2 F 4 Aerosols

GHG emissions from the use of hydrocarbon aerosol propellant (HAPs) Was not available, hence emissions from this category were not estimated.

1.10.6.5 2 F 5 Solvents

Activity data on the use of HFCs as solvents was not available, hence these emissions were not estimated.

1.10.7 2 G Electrical Equipment

1.10.7.1 2 G 1 Electrical Equipment

Activity data on electrical equipment used in the transmission and distribution of electricity above 1 kV was not available. SF_6 is used in gas insulated switchgear (GIS), gas circuit breakers (GCB), gas-insulated transformers (GIT), gas-insulated lines (GIL), outdoor gas-insulated instrument transformers, reclosers, switches, ring main units and other equipment.

GHG emissions from the following source categories were not estimated owing to lack of activity data:

- 2G 2 SF₆ and PFCs from Other Product Uses
- 2G 2a Military Applications include AWACS
- 2G 2b Accelerators Particle
- 2G 3 N₂O from Product Uses

h. Category-specific Planned Improvements

GHG emissions from 2 G were not estimated due to lack of data. There is need to collect activity data on this source category and calculate GHG emissions for the whole time series.

1.10.8 Other product manufacture and use-2H

1.10.8.1 H 1 Pulp and Paper Industry,

The GHG emissions were not estimated due to lack of activity data on pulp production.

1.10.8.2 H 2 Food and Beverages Industry

The GHG emissions reported under this category are NMVOCs from the production of alcohol, beer, bread and wine. Beer and bread are the main contributors to emissions from this source category.

Figure 1-13: NMVOC emissions from food and beverages

The NMVOC emissions from food and beverages have been on a gradual increasing trend since 1992 up to 2011 and thereafter there was a sharp increase up to 2014, surging in 2016. There was a sharp increase in 2016 followed by a decline in 2017. The change of emissions from 148.9Gg CO₂eq in 1992 to 1796.5Gg CO₂eq in 2017 represents about 83% increase in CO₂ emissions.

Methodological issues

The Tier 1 approach for process emissions from the food and beverages industry was applied using annual national total food and beverages production. The Tier 1 emission factors assume an averaged or typical technology and abatement implementation in the country and integrate all different sub-processes in the food and beverages production. The tier method followed Figure 3.1 decision tree for estimation of NMVOCS emissions from the food and beverages industry, in section 3.1 of Volume 2-h-2 of the CORINAIR Guidebook 2019. NMVOCS emissions were calculated according to the following general Equation below:

 $E_{pollutant} = AR_{production} \bullet EF_{pollutant};$

Equation 1-1: NMVOCS Food and beverages

This equation is applied at the national level, using annual national total food and beverages production.

Activity data

Table 1-23 presents Activity Data for Food and Beverages Industry from 1992 to 2017. The data was obtained from CSA.

Sourc											
е	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Alcoho		0.65029	2.27153	0.36562	2.99599		2.33875	2.71794	2.29993		
1	0.59964	4	1	3	1	2.5592	4	7	5	0	3.15316
	86.3665	105.499	128.151	146.156	177.031	170.222	167.770	185.994	224.463		366.019
Beer	1	8	2	1	8	2	3	5	2	0	4
Bread	62.458	37.96	24.72	37.296	40.606	41.544	54.058	38.526	61.53	0	39.958
		10.8820	9.05940	11.1979				2.83025			4.21512
Wine	9.6064	9	4	3	9.18691	5.58451	4.16488	4	3.70352	0	4

Table 1-23: Food and Beverages Industry

	159.030	154.992	164.202	195.015	229.820	219.909	228.331	230.068		0.00	
TOTAL	6	1	2	6	7	9	9	7	291.997	0	413.346

2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
2.032	1.137	1.042		3.189	2.522	1.753	7.855	2.959	0.783	0.166	4.100	5.616	8.915	16.52
148	896	269	0	611	117	474	442	066	477	163	906	418	384	087
428.8	251.8	295.4	315.2	350.1	431.7	507.7	593.5	811.1	919.7	1288.	1507.	1170.	2076.	1338.
864	869	806	58	811	156	23	701	48	339	535	372	209	275	915
41.49		77.15		68.69		61.17	141.5	173.8	595.5	523.4	582.7	236.4	345.2	457.6
4	39.04	4	48.52	6	62.51	6	3	6	68	8	8	44	28	1
5.056	6.336	10.19	8.117	8.352	7.772	8.271	9.059	10.16	11.20	10.13	10.33	11.58	8.890	15.86
948	906	511	724	828	336	774	246	604	378	839	731	14	976	589
477.4	298.4	383.8	371.8	430.4	504.5	578.9	752.0	998.1	1527.	1822.	2104.	1423.	2439.	1828.
69	02	72	96	20	20	24	15	33	289	319	590	851	309	912

Source; (CSA, 2021)

f. Emission Factors for food and beverages

Emission factor	Source	Comment
(Tier 1)	Default (CORINAIR)	Default EF from CORINAIR
		Guidebook 2019.

g. Time series consistency

Category-specific Recalculations. Recalculations were not performed since these were not reported in the SNC

h. Category-specific QA/QC and Verification

Conduct general QA/QC procedures in	
section 7.6.4.1 in Chapter 7 Volume 3 of the	
IPCC Guidelines	

1.11 Status of Planned Improvements from SNC

Constraint/gap	Planned improvement	Status
Data for national cement production provided by the CSA was used and not production data from factories or institutions	Collect cement and clinker production from the CCIIDI	Activity data used in the TNC was obtained from the CSA and CCIIDI, covering 2002 to 2019
Activity data on non-energy use of fuels: lubricants, bitumen, asphalt	Collect data on NEUs and calculate emissions	Data on NEUs was collected from CSA, Customs and MIDI.
GHG emissions from refrigeration and air conditioning were not estimated since the data was over- aggregated	Collect HFC data and data on and AC products and calculate GHG emissions from R & AC	Data on national refrigerators production was obtained from MIDI while the imports figures were obtained from Customs.

1.12 Precursor Emissions from IPPU Sector

This section presents precursor emissions from the IPPU sector. The emission factor values were obtained from the EMEP/EEA 2019 Guidelines (EMEP/EEA, 2019) and the 1996 IPCC Guidelines.

Total Precursor emissions from the IPPU sector

NMVOCs Precursor Emissions

Figure 1-14: Total NMVOCs emissions from IPPU

Figure 1-14 presents total NMVOCs emissions from the IPPU Sector, excluding those recorded in 2H (Food and Beverages). NMVOC emissions were consistently low from 1990 to 2005, and increased gradually from 2006 to 2019, with a few noticeable declines in 2008 and 2011. The highest values were recorded in 2017, followed by a sharp decrease in 2018 and 2019. The increase of NMVOCs emissions from 2007 to 2019 can be attributed to the Industry sector development, as well as the fact that emissions from Lubricant use (2D1) were reported from 2007, Glass emissions were reported from 2008.

SO₂ Precursor Emissions

Figure 1-15 presents total SO_2 emissions from IPPU Sector. These emissions were only estimated from the Iron and Steel production (2C1) sub category. The emission levels were consistently low from 1996 to 2005, with a spike in 2006. From 2007 to 2010 the emissions were almost constant with a sharp increase from 2011 peaking in 2017. This was followed by constant emissions from 2018 up to 2020. The SO_2 emissions were calculated from the cement category. The 2017 emission levels represent a 93% increase from the 1996 levels.

Figure 1-15: Total SO₂ Emissions from IPPU

Sub category precursor emissions

Lubricant Use (2D1) NMVOCs emissions

NMVOCs emissions from Lubricant use subcategory were fluctuating throughout the reporting period. There was a swift increase in the emissions in 2009 and 2010 and a rapid decline was experienced in 2011 followed by gradual fluctuations up to 2019. The 2019 emission levels depict a 66.7% decrease from the 2007 emission levels. The emissions peaked in 2010.

Figure 1-16: NMVOCs emissions from Lubricant Use (2D1)

Iron and Steel Production (2C1) NMVOCs emissions

NMVOC emissions from the iron and Steel Production sub category remained constant for the period 1990 to 2005, and gradually increased in 2006 and 2007. This was followed by a sharp drop in 2008 and a gradual fluctuating trend in emissions was experienced from 2009 to 2017. The highest emission levels were recorded in 2017, followed by a sharp decrease in 2018 and 2019.

Figure 1-17: NMVOC emissions from Iron and Steel Production

Glass Production (2A3) NMVOCs emissions

Figure 1-18: NMVOC Emissions from Glass Production

NMVOCs emission from Glass production reported from 1998 to 2001 were around 0.000020 Gg. There was a sharp decline in NMVOCs emissions in the period from 2001 to 2015 with intermittent spikes in between followed by a sudden increase in 2016 to around 0.000056Gg. In 2017 there was a sharp decline in the emissions.

2 Summary

Ethiopia's IPPU sector GHG emissions cover the period 1990 to 2019. Tier one methodology was applied on all categories, owing to data availability challenges. The Activity data provided was not sufficient to calculate GHG emissions using higher tier methodologies. Tier 2 data was available for one year in the cement sector, making it impossible to apply it in the calculations. The emission factors were obtained from the 2006 IPCC Guidelines, except for those for food and beverages that were obtained from EMP/CORIAIR Guidebook for 2019. Main Activity data sources were the CSA, Ethiopian Customs and Government Institutions

such as CCIIDI, MIDI and the Ozone Secretariat. However, there were missing data for some years, and interpolation and extrapolation were used to cover the gaps in such cases. There were inconsistences in the data for glass, lime as well as food and beverages production, hence it could not be extrapolated. CSA data for the year 2001 was missing and interpolation was used to cover the year. The Global Warming Potentials from the IPCC Second Assessment report were used. In 2017, which is the reporting year for the TNC, CO₂ emissions accounted for the bulk (98.29%) of the GHG emissions from IPPU. HFCs contributed below 2%. Cement production was the major source of emissions over the years in Ethiopia's IPPU sector. For major improvements, there is need to collect sufficient data for higher level tier methodologies, especially for key categories, notably cement. There is also need to Develop and implement a category specific QA/QC plan.

3 References

EMEP/EEA, 2019. *EMEP/EEA*. [Online] Available at: <u>https://www.eea.europa.eu/themes/air/air-pollution-sources-1/emep-eea-air-pollutant-emission-inventory-guidebook</u>

FDRE, 2021. Ten years perspective development plan (10YDP), Addis Ababa: Ethiopia.

FDRE, 2021. *Updated Nationally Determined Contributions,* Addis Ababa: Federal Democratic Republic of Ethiopia.

IPCC, 1995. *Second Assesment Report AR2.* [Online] Available at: <u>https://ww.ipcc.ch</u> [Accessed 7 April 2021].

IPCC, 2006. *IPCC Guidelines for Greenhouse Gas Inventories.* Hayama: Institute for Global Environmental Strategies.

4 ANNEXES

ANNEX A: Glass bottles

		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Glass Bottles	('000 PCS)	143 820	219 743	269 021	140691 5	12 362	2 647	16 658	14,68 1	34 135	37 333
Dotties	Actual # (*1000	143,820,	219,743	269,021,	140,69	12,362,	2,047	16,658,00	14,68	34,135	37,333
	PCS)	000	,000	000	1,500	000	2,647,000	0	1,000	,000	,000
Average weight of a bottle	>Kg (*0.226 8)	32,618,3 76	49,837, 712	61,013,9 62	31,908, 832	2,803,7 01.6000	600,339	3,778,034	3,329, 650	7,741, 818	8,467, 124
Conversi on to tonnes	>tonne s (/1000	32,618.3 8	49,837. 71	61,013.9 6	31,908. 83	2,803.7 0	600.34	3,778.03	3,329. 65	7,741. 82	8,467. 12
From IPCC default	Cullet value (*0.4)										

		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Glass Bottles	('000 PCS)	20.801	20.410	16.584	26.089	32.081	18.785	-	33.886	482.697	2.872
	Actual #										1-
	(*1000 PCS)	20,801,0 00	20,410,0 00	16,584,0 00	26,089,0 00.	32,081,0 00	18,785,0 00		33,886,0 00	482,697,0 00	2,872,0 00
Average weight of a bottle	>Kg (*0.226 8)	4,717,66 6	4,628,98 8	3,761,25 1	5,739,58 0	7,057,82 0	4,132,70 0	-	7,454,92 0	106,193,3 40	631,84 0
Conversi on to tonnes	>tonne s (/1000	4,717.67	4,628.99	3,761.25	5,739.58 0	7,057.82 0	4,132.70 0	0.00 0	7,454.92 0	106,193.3 40	631.84 0
From IPCC default	Cullet value (*0.4)										

Source: CSA, 2020

Annex B: Glasses

		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Glasses	('000 PCS)	2,731	-	-		-	-	-	-	-	-
	Act # (*1000)	2,731,000									
Average weight of piece	>Kg (*10)	27,310,000									
Conversion to tonnes	>t (/1000)	27,310									
From IPCC default	Cullet value (*0.4)	32,618.4									
		59,928.38									

		2008	2009	2010	2011	2012	20 13	20 14	20 15	2016	2017
Glasses	('000 PCS)			26	1,394	93	-	-	-	919	919
	Act # (*1000)	-	-	26,000	1,394,000	93,000				919,000	919,000
Average weight of piece	>Kg (*10)	-	-	260,000	13,940,000	930,000				9,190,000	9,190,000
Conversion to tonnes	>t (/1000)	-	-	260	13,940.000	930.000	0. 00 0	0.0 00	0.0 00	9,190.000	9,190.000
From IPCC default	Cullet value (*0.4)	-	-	130.0			0. 00 0	0.0 00	0.0 00		
				3,761.25							

Source: CSA, 2020

Annex C: Brick of clay

		1998	1999	2000	2001	2002	2003	2004	2005	2006
Bricks of Clay	('000 PCS)	19,789	19,410	20,152	21131.5	22,111	20,961	14,334	24,785	13,893
	*1000(Actu PCS	19,789,000	19,410,000	20,152,000	21,131,50 0	22,111,000	20,961,000	14,334,000	24,785,0 00	13,893,0 00
Average mass of a brick	>KG (*1.88k g)	37,203,320.0 0	36,490,800 .00	37,885,760. 00	39,727,22 0.00	41,568,680 .00	39,406,680.0 0	26,947,920.0 0	46,595,8 00.00	26,118,8 40.00
Conversion to tonnes	>T(/100 0)	37,203.32	36,490.80	37,885.76	39,727.22	41,568.68	39,406.68	26,947.92	46,595.8 0	26,118.8 4
From IPCC default	>losses (*1.1)	40,923.65	40,139.88	41,674.34	43,699.94	45,725.55	43,347.35	29,642.71	51,255.3 8	28,730.7 2

		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Brick												
s of	('000								12,22			
Clay	PCS)	44,957	13,909	13,087	17,645	18,408	13,976	1,441	3	1,053	4,324	9,119
	*1000											
	(Actu											
	al	44,957		13,087,0	17,645,00	18,408,0			12,22	1,053,00	4,324,00	9,119,00
-	PCS	,000,	13,909,000	00	0	00	13,976,000	1,441,000	3,000	0	0	0
Aver												
age												
mass	>KG	84,519										
of a	(*1.88	,160.0	26,148,920	24,603,5	33,172,60	34,607,0			22,97	1,979,64	8,129,12	17,143,7
brick	kg)	0	.00	60.00	0.00	40	26,274,880	2,709,080	9,240	0	0	20
Conv												
ersio												
n to	>T											
tonn	(/1000	84,519		24,603.5		34,607.0			22,97	1,979.64	8,129.12	17,143.7
es)	.16	26,148.92	6	33,172.60	40	26,274.880	2,709.080	9.240	0	0	20
From												
IPCC	>loss											
defa	es(*1.	92,971		27,063.9		38,067.7			25,27	2,177.60	8,942.03	18,858.0
ult	1)	.08	28,763.81	2	36,489.86	44	28,902.368	2,979.988	7.164	4	2	92

Source: CSA, 2020

Annex D: Cement floor tiles

		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Cement Floor Tiles	SQ.M	368,32 8	340,652	551,107	386454	221,801	395,916	245,696	485,86 8	953,011	465,77 9
Average per square metre	>kg(*20)	7,366,5 60	6,813,04 0	11,022,1 40	7,729,08 0	4,436,020	7,918,32 0	4,913,92 0	9,717,3 60	19,060,2 20	9,315,5 80
Conversion to tonnes	>t(/1000	7,366.5 6	6,813.04	11,022.1 4	7,729.08	4,436.02	7,918.32	4,913.92	9,717.3 6	19,060.2 2	9,315.5 8
From IPCC default	>losses (*1.1)	8,103.2 2	7,494.34	12,124.3 5	8,501.99	4,879.62	8,710.15	5,405.31	10,689. 10	20,966.2 4	10,247. 14

		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Cement Floor Tiles	SQ.M	287,2 57	112,616	199,092	413,731	776,566	190,1 12	896,7 62	623,631	5,776,73 7	1,095,1 33
Average per square metre	>kg (*20)	5,745, 140	2,252,3 20	3,981,8 40	8,274,6 20	15,531, 320	3,802, 240	17,93 5,240	12,472,6 20	115,534, 740	21,902, 660
Conversion to tonnes	>t (/1000	5,745. 14	2,252.3 2	3,981.8 4	8,274.6 20	15,531. 320	3,802. 240	17,93 5.240	12,472.6 20	115,534. 740	21,902. 660
From IPCC default	>losses (*1.1)	6,319. 65	2,477.5 5	4,380.0 2	9,102.0 82	17,084. 452	4,182. 464	19,72 8.764	13,719.8 82	127,088. 214	24,092. 926

Source: CSA, 2020

ANNEX E: Summary on use of ODS alternatives

Alternative	Metric tonne							
	2012	2013	2014	2015				
HFC	·							
HFC-134a	25.24	29.24	29.64	33.94				
HFC-32	-	-	-	-				
HFC-152a	-	-	-	-				
HFC-245fa	3.32	6.65	12.94	13.23				
HFC-227ea/HFC-365mfc	-	-	-	-				
Others (specify)	-	-	-	-				
	н	FC blends						
R-404A	8.1	20.1	16.52	19.32				
R-407C	14.22	22.14	20.02	25.5				
R-410A	450	797.20	1397	2106				
R-507A	-	-	-	-				
Others (specify)	56.34	32.7	33.77	11.26				
		HFO						
HFO-1234yf	-	-	-	-				
HFO-1234ze	172.04	172.99	185.31	196.24				
HFO-1233zd	19.59	20.09	45.29	56.99				
HFO-1336mzzm		-	-	-				
	Other a	alternative						
Methyl formate	-	-	-	-				
Methylal	-	-	-	-				
Ethanol(m ³)	1,734,884	1,854,915.49	1,662,989	1,769,209.36				
DME	-	-	-	-				
HC-290	-	-	-	-				
HC-600a	-	-	-	-				
Pentane(C,N,I)	-	-	-	-				
R-744	786.22	381.99	352.51	1,834.4				
R-717	69.52	27.44	59.02	66.05				
Others Methylchloride	407	367.63	355.47	267.18				
Hydrocarbon	12.56	30.65	23.99	65.8				

ANNEX F: Imported ODS alternatives

l	Alternative		Metric tonne						
		2012	2013	2014	2015				
HFC									
HFC-134a		25.24	29.24	29.64	33.94				
HFC-32		-	-	-	-				
HFC-152a		-	-	-	-				
HFC-245fa		3.32	6.65	12.94	13.23				
HFC-227ea/H	FC-365mfc	-	-	-	-				
Others (specif	y)	-	-	-	-				
		I	HFC blends						
R-404A		8.1	20.1	16.52	19.32				
R-407C		14.22	22.14	20.02	25.5				
R-410A		450	797.20	1397	2106				
R-507A		-	-	-	-				
Others (specif	y)	56.34	32.7	33.77	11.26				
			HFO						
HFO-1234yf		-	-	-	-				
HFO-1234ze		172.04	172.99	185.31	196.24				
HFO-1233zd		19.59	20.09	45.29	56.99				
HFO-1336mz	zm		-	-	-				
		Other	alternative						
Methyl formate	e	-	-	-	-				
Methylal		-	-	-	-				
Ethanol(m ³)		14,452.0	14,683.49	20,465	19,805.36				
DME		-	-	-	-				
HC-290		-	-	-	-				
HC-600a		-	-	-	-				
Pentane(C,N,	I)	-	-	-	-				
R-744		0.12	0.1	0.47	1.04				
R-717		69.52	27.44	59.02	66.05				
Others	Methyl chloride	407	367.63	355.47	267.18				
	Hydrocarbon	12.56	30.65	23.99	65.8				

Annex G: Precursor Emission Factors

2A1 Cement Production

Emission factor	Source	Comment
0.3 kg SO2/tonne cement.	Revised 1996 IPCC Guidelines for	Default emission factor was applied
	national GHG Inventories: Workbook	

2A3 Glass Production

Emission factor	Source	Comment
NMVOCS 0.5 kg SO2/tonne of product	Revised 1996 IPCC Guidelines for	Default emission factor was applied
	national GHG Inventories: Workbook	

2A Iron and Steel

Emission factor	Source	Comment
NMVOC 150g/Mg	EMEP/EEA 2019 Guidelines	Default emission factor was applied

2D1 lubricant use

Emission factor	Source	Comment
NMVOC 2 kg/Mg	EMEP/EEA 2019 Guidelines	Default emission factor was applied

5 IPPU Sector QC checks

QA/QC Procedures Applied

When compiling the inventory in Ethiopia, inventory quality is controlled by performing QC activities (such as checking the correctness of calculations and archive of documents) at each step in accordance with 2006 IPCC Guidelines. In Ethiopia, the QC activities relating to inventory compilation performed by personnel involved in inventory compilation, relevant ministries and agencies—are considered to be QC. External reviews by experts who are outside the inventory compilation system are considered to be QA. They assess data quality from the perspectives of scientific knowledge and data availability with respect to current calculation methods.

In accordance with Table 6.1, Chapter 6, Vol.1 of the 2006 IPCC Guidelines, general QC procedures include the general items to be confirmed which are related to the calculation, data processing, completeness, and documentation applicable to all emission source and sink categories. General QC procedures are implemented by each inventory compiler.

This section describes the QC activities of the Sectoral expert.

- Checking for transcription errors in data entry and referencing
- Checking to ensure that emissions are accurately estimated
- Checking to see that parameters and emission units are accurately recorded, and that proper conversion factors are used
- Checking the conformity of databases and/or files
- Checking the consistency of data from one category to another
- Checking the accuracy of inventory data behavior from one processing step to the next
- Checking completeness
- Checking time series consistency
- Checking trends
- Conducting comparisons with past estimated values
- Checking that uncertainties in emissions and removals are accurately estimated and calculated
- Carrying out reviews of internal documentation
- Checking that the assumptions and criteria for selecting AD and EFs are documented

IPPU Sector QC Activities

		Task Completed		
QC Activity	Procedures	Name/ Initials	Date	Supporting Documents (List Document Name)
Check that assumptions and criteria for the selection of activity data and emission factors are documented.	• Cross-check descriptions of activity data and emission factors with information on categories and ensure that these are properly recorded and archived.			
Check for transcription errors in data input and reference.	• Confirm that bibliographical data references are properly cited in the internal documentation (MDD template report)			
	• Cross-check a sample of input data from each category (either measurements or parameters used in calculations) for transcription errors.			
	 Utilize electronic data where possible to minimize transcription errors. 			
	 Check that spreadsheet features are use d to minimize user/entry error: 			
	 Avoid hardwiring factors into formulas 			
	Create automatic look-up tables for common values used throughout calculations.			
	 Use cell protection so fixed data cannot accidentally be changed. Build in automated checks, such as computational checks for calculations, or range checks for input data 			
Check that emissions/removals are calculated	Reproduce a representative sample of emissions/removals calculations.			
correctly.	 If models are used, selectively mimic complex model calculations with abbreviated calculations to judge relative accuracy. 			
Check that parameter and emission/removal units are correctly recorded and that appropriate conversion factors are used.	 Check that units are properly labeled in calculation sheets and (MDD template report) Check that units are correctly carried through from beginning to end of calculations. Check that conversion factors 			
	Check that conversion factors are correct.			

		Task Completed		
QC Activity	Procedures	Name/ Initials	Date	Supporting Documents (List Document Name)
	 Check that temporal and spatial adjustment factors are used correctly. 			
Check the integrity of database files.	 Confirm that the appropriate data processing steps are correctly represented in the database. Confirm that data relationships are correctly represented in the database. Ensure that data fields are properly labeled and have the correct design specifications. Ensure that adequate documentation of database and model structure and operation are archived. 			
Check for consistency in data between categories.	 Identify parameters (e.g., activity data, constants) that are common to multiple categories and confirm that there is consistency in the values used for these parameters in the emissions/removals calculations. 			
Check that the movement of inventory data among processing steps is correct.	 Check that emissions/removals data are correctly aggregated from lower reporting levels to higher reporting levels when preparing summaries. Check that emissions/removals data are correctly transcribed between different intermediate products. 			
Review of internal documentation and archiving.	 Check that there is detailed internal documentation to support the estimates and enable duplication of calculations. Check that every primary data element has a reference for the source of the data (via cell comments or another system of notation). Check that inventory data, supporting data, and inventory records are archived and stored to facilitate detailed review. Check that the archive is closed and retained in secure place following completion of the inventory Check integrity of any data archiving arrangements of 			

		Task Completed		
QC Activity	Procedures	Name/ Initials	Date	Supporting Documents (List Document Name)
	outside organizations involved in inventory preparation.			
Check methodological and data changes resulting in recalculations.	 Check for temporal consistency in time series input data for each category. Check for consistency in the algorithm/method used for calculations throughout the time series. Reproduce a representative sample of emission calculations to ensure mathematical correctness. 			
Check time series consistency	 Check for temporal consistency in time series input data for each category. Check for consistency in the algorithm/method used for calculations throughout the time series. Check methodological and data changes resulting in recalculations. Check that the effects of mitigation activities have been appropriately reflected in time series calculations. 			
Check completeness	 Confirm that estimates are reported for all categories and for all years from the appropriate base year over the period of the current inventory. For subcategories, confirm that the entire category is being covered. Proved clear definition of 'Other' type categories. Check that known data gaps that result in incomplete category emissions/removals estimates are documented, including qualitative evaluation of the importance of the estimate in relation to total net emissions (e.g. subcategories classified as 'not estimated'). 			
Trend checks	 For each category, compare current inventory estimates to previous estimates, if available. If there are significant changes or departures from expected trends, re-check estimates and explain any difference. Significant changes in 			

		Task Con	npleted	
QC Activity	Procedures	Name/ Initials	Date	Supporting Documents (List Document Name)
	 emissions or removals from previous years may indicate possible input or calculation errors. Check value of implied emission factors (aggregate emissions/removals divided by activity data) across time series. Are changes in emissions or removals being captured? Check if there any unusual or unexplained trends noticed for activity data or other parameters across the time series. 			