

ETHIOPIA NATIONAL GREENHOUSE GAS INVENTORY FOR THE WASTE SECTOR: 1990 - 2019

Prepared for: European Union Delegation to Ethiopia

Prepared by: Dingane Sithole Addisu Amare

Contract Number: FED/2019/412-677 The content of this report is the sole responsibility of the Consortium led by Stantec and can in no ways be taken to reflect the views of the European Union. This report is prepared solely for the use and benefit of the Contracting Authority. It is the result of an independent review, and neither the Consortium, nor the authors accept or assume any responsibility or duty of care to any third party.

This document entitled was prepared by Stantec SA ("Stantec") for the account of European Union Delegation to Ethiopia (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document

Table of Contents

1 Ove	erview of Waste Sector	1
1.1	Ethiopia Waste Sector Overview	1
1.2	Overview of GHG emissions in 2020.	1
1.3	Changes in emissions in the reporting years	5
1.4	Overview of methodology and completeness	5
1.5	GWP Global Warming Potentials (GWP)	6
1.6	Trends in GHG emissions	6
1.7	Emissions by source category	7
1.7.	7.1 Solid Waste Disposal-4 A	7
1.7.	2.2 Biological treatment of solid waste-4B	10
1.7.	7.3 Incineration and Open Burning of Waste-4 C	11
1.7.	7.4 Wastewater Treatment and Discharge-4 D	12
1.7.	7.5 Precursors from wastewater handling	16
1.7.	C.6 Other (please specify) -4 E	16
1.7.	7.7 Long-term carbon storage	16
1.8	Uncertainty analysis	
1.9	Recalculations	
1.10	Planned improvements	
2 Refe	ferences	
ANNEXE	ÆS	21

List of figures

Figure 1-1: GHG emissions from Waste Sector by source category	3
Figure 1-2: GHG emission by gas in 2017	3
Figure 1-3: CO ₂ emissions from Ethiopia waste sector	4
Figure 1-4: CH ₄ emissions from Waste sector	4
Figure 1-5: N ₂ O emissions from waste sector	5
Figure 1-6 : Waste sector emissions by subcategory 1990-2020	7
Figure 1-7: MSW Methane emissions trend 1990-2019	8
Figure 1-8: GHG emissions from composting	10
Figure 1-9: Total GHG emissions from open burning of waste, 1990-2020	12
Figure 1-10: Precursors from open burning of waste	12
Figure 1-11: Total GHG emission from wastewater treatment	13
Figure 1-12: Emissions from Domestic wastewater treatment and discharge	13
Figure 1-13: Industrial wastewater treatment and discharge	15
Figure 1-14: Precursors from wastewater handling	16
Figure 1-15: Stored carbon	16

List of Tables

Table 1-1: GHG emissions totals by Gas-2017.	2
Table 1-2: GHG emissions from the waste sector in Gg CO ₂ eq	2
Table 1-3: Differences in emissions between reporting years	5
Table 1-4: Summary of methodologies	6
Table 1-5: Global warming Potentials from the IPCC AR2	6
Table 1-6: Estimated total solid waste generated (Gg)	8
Table 1-7: Default values for DOC in different waste types	9
Table 1-8: Constant k and half-life t _{1/2}	9
Table 1-9: Waste composting data	
Table 1-10: Wastewater parameters	
Table 1-11: Industrial wastewater activity	
Table 1-12: Emission Factors and parameters	
Table 1-13: Estimated total solid waste generated (Gg)	17
Table 1-14: Default values for DOC in different waste types	
Table 1-15: Constant k and half-life t _{1/2}	18
Table 1-16: Uncertainty analysis	19
Table 1-17: Recalculations of INC and SNC	19
Table 1-18: Planned Improvements	19

List of equations

ANNEXES

Annex A: Sources and Types of General Solid Wastes in Ethiopia	21
Annex B: Housing units of urban areas by type of toilet facility by region	21
Annex C: Characteristics of wastewater effluents from selected industries in Ethiopia	22
Annex D: Population	22

Acronyms

BODBiochemical Oxygen DemandCH4MethaneCOCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCCSACentral Statistics AgencyDOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonDCfFraction of Degradable Organic CarbonBMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC02eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsNzONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNXOxidation FactorGAOxidation FactorGXOxidation FactorGXOxidation FactorGXOxidation FactorGXOxidation FactorSVSSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFECCUnited Nations Environment ProgrammeUNFECCUnited Nations Framework Convention on Climate ChangeW	AR2	IPCC Second Assessment report
COCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCCSACentral Statistics AgencyDOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC02eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid WasteNDCNon-Methane Voltaic Organic CompoundsNMVOCNon-Methane Voltaic Organic CompoundsNMVOCNon-Methane Voltaic Organic CompoundsNMVOCNon-Methane Voltaic Organic CompoundsNDXsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Environment Programme	BOD	Biochemical Oxygen Demand
CO2Carbon dioxideCODChemical Oxygen DemandCCSACentral Statistics AgencyDOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC02eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsNz0Non-Methane Voltaic Organic CompoundsNMVOCNon-Methane Voltaic Organic CompoundsNOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSubl Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Environment ProgrammeUNFCCCUnited Nations Environment Programme	CH₄	Methane
CODChemical Oxygen DemandCCSACentral Statistics AgencyDOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC02eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsNzQNitrous oxideNDCNon-Methane Voltaic Organic CompoundsNMVOCNon-Methane Voltaic Organic CompoundsNOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Framework Convention on Climate Change	CO	Carbon monoxide
CCSACentral Statistics AgencyDOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgCO2eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid WasteMWMegawattsN ₂ ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNXsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCUnited Nations Environment Programme	CO ₂	Carbon dioxide
DOCDegradable Organic CarbonDOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC02eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMVMegawattsN ₂ ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	COD	Chemical Oxygen Demand
DOCfFraction of Degradable Organic CarbonEMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgC0_eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNXSNitrogen oxidesOXOxidation FactorGQQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNEPUnited Nations Framework Convention on Climate Change	CCSA	Central Statistics Agency
EMEP/EEAEuropean air pollutant emission inventory guidebookFODFirst Order DecayGDPGross Domestic ProductGgCO2eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMOUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNXSNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	DOC	Degradable Organic Carbon
FODFirst Order DecayGDPGross Domestic ProductGgCO2eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	DOCf	Fraction of Degradable Organic Carbon
GDPGross Domestic ProductGgCO2eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	EMEP/EEA	European air pollutant emission inventory guidebook
GgCO2eqGigagrams Carbon Dioxide equivalentGHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNoxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Framework Convention on Climate Change	FOD	First Order Decay
GHGGreenhouse GasGTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSoxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	GDP	Gross Domestic Product
GTPIISecond Growth and Transition PlanGWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	GgCO₂eq	Gigagrams Carbon Dioxide equivalent
GWPGlobal Warming PotentialIPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	GHG	Greenhouse Gas
IPCCIntergovernmental Panel on Climate ChangeMCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNanionally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	GTPII	Second Growth and Transition Plan
MCFMethane Correction FactorMoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN₂ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	GWP	Global Warming Potential
MoUDCMinistry of Urban Development and ConstructionMSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN₂ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	IPCC	Intergovernmental Panel on Climate Change
MSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	MCF	Methane Correction Factor
MSWManaged Solid WasteMSWDsMunicipal Solid Waste Disposal SiteMWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	MoUDC	Ministry of Urban Development and Construction
MWMegawattsN2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	MSW	
N2ONitrous oxideNDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	MSWDs	Municipal Solid Waste Disposal Site
NDCNationally Determined ContributionsNMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	MW	Megawatts
NMVOCNon-Methane Voltaic Organic CompoundsNOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	N₂O	Nitrous oxide
NOxsNitrogen oxidesOXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	NDC	Nationally Determined Contributions
OXOxidation FactorQA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	NMVOC	Non-Methane Voltaic Organic Compounds
QA/QCQuality Assurance/Quality ControlSOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	NOxs	Nitrogen oxides
SOxSulphur OxidesSTCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	OX	Oxidation Factor
STCSub-Technical Committee of CRGE initiativeSWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	QA/QC	Quality Assurance/Quality Control
SWDSSolid Waste Disposal SitesUNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	SOx	Sulphur Oxides
UNEPUnited Nations Environment ProgrammeUNFCCCUnited Nations Framework Convention on Climate Change	STC	Sub-Technical Committee of CRGE initiative
UNFCCC United Nations Framework Convention on Climate Change		
WASH Water, Sanitation and Hygiene	UNFCCC	United Nations Framework Convention on Climate Change
	WASH	Water, Sanitation and Hygiene

NATIONAL INVENTORY REPORT WASTE SECTOR

1 Overview of Waste Sector

1.1 Ethiopia Waste Sector Overview

Ethiopia's waste generation has been on the rise owing to the country's rising population and recent industrial growth. The increase in per capita Gross Domestic Product (GDP) drives waste generation due to the higher rates of solid and liquid waste generation. The per capita solid waste generation is projected to increase from 0.33 kg/person/day in 2010 to 0.44 kg/person/day in 2030 (Worku, 2011). Urbanisation and transition of small population centres into larger towns and cities is also driving emissions through the higher per capita solid waste generation. The number of urban centres with at least 20,000 people is projected to increase from 86 in 2010 to 237 in 2030 (Worku, 2011)

The development of solid waste and wastewater management facilities has not been commensurate with the rates of waste generation. As of 2020, only Addis Ababa had a managed dumpsite, although its capacity was not matching the city's solid waste generation rates (Worku, 2011). Open burning has been the most common waste disposal method in urban areas due to unavailability of waste collection and disposal services. Most industries discharge wastewater into water bodies without treatment (Worku, 2011). Ethiopia has made much progress in extending the provision of Water, Sanitation and Hygiene (WASH) services from the 1990 very low base of 19 per cent for water supply and 3 per cent for sanitation coverage, to 52 per cent and 63 per cent access to WASH in rural and urban areas respectively by 2010 (FDRE, 2016).

The country aims, in its Environmental policy, to provide human and domestic waste disposal facilities, give priority to waste collection services and to its safe disposal (FDRE, 1997). Further, the country intends to recycle liquid and solid wastes from homesteads and establishments for the production of energy, fertiliser and for other uses. Ethiopia targets to increase waste collection and disposal coverage to 90% in 75 urban centres, as well as increasing the power generating capacity of the country from 4,180 Megawatts (MW) in 2014/15 to 17,208MW by 2019/20; of which, 50MW coming from wastes (Second Growth and Transition Plan (GTPII)) (FDRE, 2016).

The Updated Nationally Determined Contributions (NDC) of Ethiopia targets a total emission reduction of 6.54 MtCO₂ eq from Ethiopia's waste sector (FDRE, 2021). Most Ethiopian municipality administrations are responsible for waste collection. However, this is a daunting task for the municipalities as up to 43 per cent of the waste is collected for disposal in unmanaged landfills, while the rest remains in the streets or is dumped in open spaces (Worku, 2011). The country is running a waste to energy project based in Addis Ababa's 36-hectare municipal landfill that has been operating for nearly 50 years, since 1968. The landfill that is currently 85 per cent full, was recently closed and transformed into the Repi project.

1.2 Overview of GHG emissions in 2020.

The Waste sector Greenhouse gases (GHG) inventory covers carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), as well the precursors gases carbon monoxide (CO), nitrogen oxides (NOxs), sulphur dioxide (SO_2) and non-methane volatile organic compounds (NMVOCs) (Table 1-1).

Table 1-1: GHG emissions	totals by Gas-2017.
--------------------------	---------------------

Categories		Emissions [Gg]								
		CH ₄	N ₂ O	NOx	СО	NMVOCs	SO ₂			
4 - Waste	130.16	183.59	5.98	NE	NE	10.92	NA			
4.A - Solid Waste Disposal	NA	13.29	0.00	NE	NE	NE	NA			
4.A.1 - Managed Waste Disposal Sites										
4.A.2 - Unmanaged Waste Disposal Sites										
4.A.3 - Uncategorised Waste Disposal Sites										
4.B - Biological Treatment of Solid Waste		NE	NE	NE	NE	NE	NE			
4.C - Incineration and Open Burning of Waste	130.16	54.53	0.72							
4.C.1 - Waste Incineration	NE	NE	NE	NE	NE	NE	NE			
4.C.2 - Open Burning of Waste	130.16	54.53	0.72	28.10	493.38	10.87	0.97			
4.D - Wastewater Treatment and Discharge	NA	115.77	5.26			0.05				
4.D.1 - Domestic Wastewater Treatment and Discharge		111.75	5.26	NE	NE	NE	NA			
4.D.2 - Industrial Wastewater Treatment and Discharge		4.02		NE	NE	0.05	NA			
4.E - Other (please specify)				NO	NO	NO	NO			

In 2017, a total of 5,838.98 GgCO₂eq GHG emissions were emitted from the waste sector in Ethiopia. The highest emissions were from domestic wastewater contributing 68.13%, followed by open burning of waste (25.65%), solid waste disposal with 4.78% and the least from industrial wastewater accounting for 1% (Table 1-2 and **Error! Reference source not found.**).

	Emissions [Gg CO2eq]						
Categories	CO ₂	CH ₄	N ₂ O	Total	% Contribution		
4 - Waste	130.16	3855.28	1853.54	5838.98	100.00%		
4.A - Solid Waste Disposal	NE	279.09	NE	279.09	4.78%		
4.A.1 - Managed Waste Disposal Sites	0	0	0	0			
4.A.2 - Unmanaged Waste Disposal Sites	0	0	0	0			
4.A.3 - Uncategorised Waste Disposal Sites	0	0	0	0			
4.B - Biological Treatment of Solid Waste	NE	NE	NE	NE	0.00%		
4.C - Incineration and Open Burning of Waste	130.16	1145.04	222.34	1497.54	25.65%		
4.C.1 - Waste Incineration	NE	NE	NE	NE	0.00%		
4.C.2 - Open Burning of Waste	130.16	1145.04	222.34	1497.54	25.65%		
4.D - Wastewater Treatment and Discharge	0	2431.15	1631.204	4062.35	69.57%		
4.D.1 - Domestic Wastewater Treatment and Discharge	0	2346.81	1631.204	3978.02	68.13%		
4.D.2 - Industrial Wastewater Treatment and Discharge		84.34	0	84.34	1.44%		
4.E - Other (please specify)		0	0	0	0.00%		

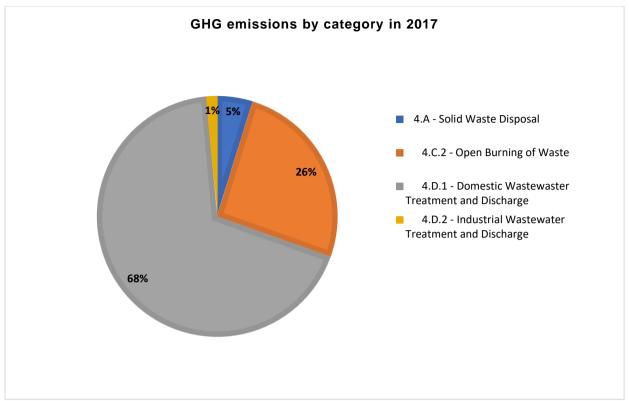


Figure 1-1: GHG emissions from Waste Sector by source category

Most of the emissions from Ethiopia's Waste sector were CH_4 comprising 57%, followed 41% CO_2 and 2% N_2O (Figure 1-2).

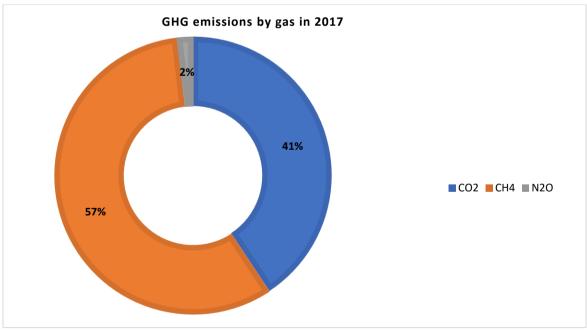


Figure 1-2: GHG emission by gas in 2017

Trends in CO_2 are presented in Figure 1-3. CO_2 emissions more than doubled from 63.71Gg in 1990 to 137.12Gg in 2020. The emissions showed a steady and gradual increase over the whole time series owing to rising trends in solid waste and wastewater generation.

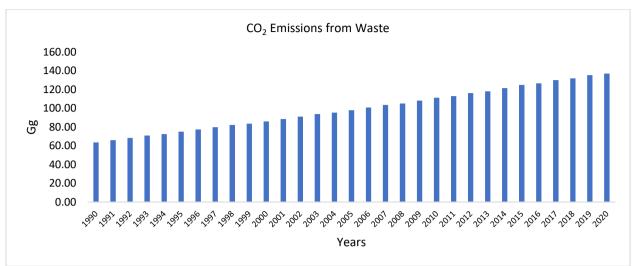


Figure 1-3: CO₂ emissions from Ethiopia waste sector.

 CH_4 emissions rose by 149% from 80.50 Gg in 1990 to 189.31Gg in 2019 (Figure 1-4). There was a steady emission rise from 1990 to 2019, followed by a sharp decline of emissions in 2020. This huge difference can be attributed to the fact that emissions from Domestic waste water treatment emissions were not reported for the year 2020 (Figure 1-6). Domestic wastewater contributed for nearly two thirds of the emissions from the Ethiopia's waste sector over the whole time series from 1990 to 2019. It was also the major contributor of CH_4 emissions.

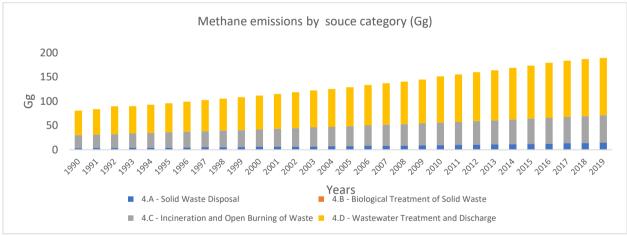
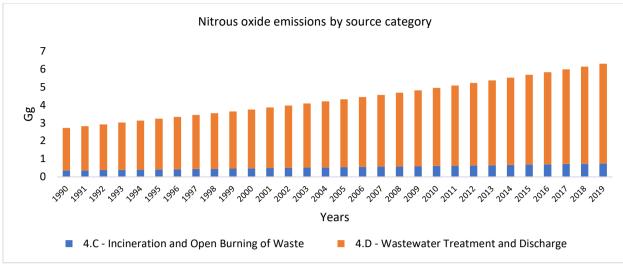



Figure 1-4: CH₄ emissions from Waste sector

The least emission by mass were N_2O , rising from 2.72Gg in 1990 to 6.29Gg in 2019, then to 0.67 Gg in 2020. The increase followed the rising trends in solid waste and wastewater generation over the years. The sharp drop in 2020 is a result of the absence of Domestic wastewater emissions in 2020.

1.3 Changes in emissions in the reporting years

There were significant differences between 1994 (INC) and 2013 (SNC) for all categories in the waste sector, ranging from 346% to 504%. The highest difference was obtained from 4.A – Solid waste disposal. Comparisons between total waste emissions reported in the INC and TNC give a small difference of 24%, with solid waste disposal giving a negative percentage of about -52%, whilst only wastewater use recorded a huge percentage difference of 385%. The SNC reported the highest emissions from the waste sector which justifies the negative percentage differences obtained when the TNC emissions were compared with the SNC emissions. However, this does not apply to Open burning which obtained a percentage difference of 1,344.57. Wastewater use emissions in the SNC and TNC were almost equal, with a difference of 8.77%. Opening burning was not reported in the INC (Table 1-3).

	INC	SNC	TNC	%INC/S	%INC/T	%SNC/T
Categories	1994	2013	2017	NC	NC	NC
		7420.60			24.3354	
Waste Total	1428.9	9	1776.63	419.3232	8	-76.0582
		3582.06	279.092			
4.A - Solid Waste Disposal	592.2	9	4	504.8749	-52.8719	-92.2086
4.C.2 - Open Burning of		103.666	1497.53			
Waste		5	7			1344.572
		3734.87	4062.35			
4.D Wastewater Use	836.7	3	4	346.3814	385.521	8.768204

1.4 Overview of methodology and completeness.

The 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for GHG inventory compilation were used in the estimation of GHGs from the Waste Sector. Default Methodology (Tier 1) was used for all the source categories. Table 1-4 summarises the methodologies, activity data sources and the categories reported in this inventory.

Table 1-4: Summary of methodologies

Octomotion				Gg			
Categories	CO ₂	CH ₄	N ₂ O	NOx	СО	NMVOCs	SO ₂
4 - Waste							
4.A - Solid Waste Disposal		T1,	T1	EMEP/ EEA ¹	EMEP/ EEA	EMEP/ EEA	NA
4.A.1 - Managed Waste Disposal Sites							
4.A.2 - Unmanaged Waste Disposal Sites							
4.A.3 - Uncategorised Waste Disposal Sites							
4.B - Biological Treatment of Solid Waste	NE	NE	NE	NE	NE	NE	NA
4.C - Incineration and Open Burning of Waste							
4.C.1 - Waste Incineration	NE	NE	NE	NE	NE	NE	NA
4.C.2 - Open Burning of Waste	T1	T1	T1	T1	T1	T1	NA
4.D - Wastewater Treatment and Discharge							
4.D.1 - Domestic Wastewater Treatment and Discharge		T1	T1	NE	NE	NE	NA
4.D.2 - Industrial Wastewater Treatment and Discharge		T1		EMEP/ EEA	EMEP/ EEA	EMEP/ EEA	NA EEA
4.E - Other (please specify)				NO	NO	NO	NO

1.5 GWP Global Warming Potentials (GWP)

The Global Warming Potentials (GWPs) from the IPCC Second Assessment Report (AR2) were applied in converting GHG from units of mass to CO₂eq, and are shown in Table 1-5.

Table 1-5: Global warming Potentials from the IPCC A	AR2
--	-----

Name of gas	Chemical formula	GWP
Carbon dioxide	CO ₂	1
Methane	CH₄	21
Nitrous oxide	N ₂ O	310

Source: IPCC AR2, 1995

1.6 Trends in GHG emissions

GHG emissions from the waste sector have been steadily rising from 2,597.18 Gg CO_2 eq in 1990. The 2019 emissions of 6,054.35 Gg CO_2 eq are more than double the 1990 emissions as shown Figure 1-6. Domestic wastewater treatment and open burning of waste have been the major sources of emissions from waste throughout the time series. The growth in GHG emissions is related to the rising population and growth in economic activities.

¹ EMEP/EEA 2019 Guidebook

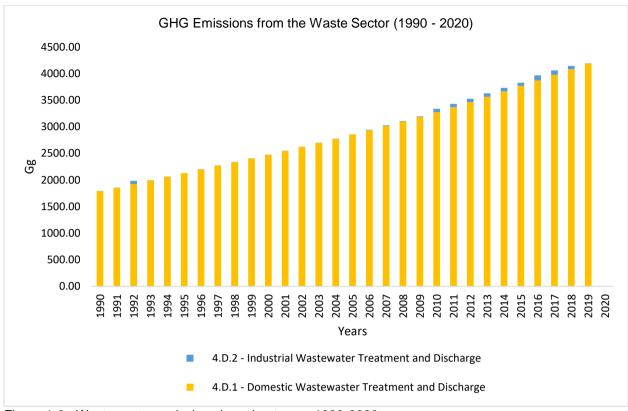


Figure 1-6 : Waste sector emissions by subcategory 1990-2020

1.7 Emissions by source category

1.7.1 Solid Waste Disposal-4 A

The GHG emissions from solid waste in Ethiopia includes methane emissions from municipal solid waste disposal sites (SWDS) defined as unmanaged shallow and uncategorized, in accordance with the classification of 2006 IPCC Guidelines (IPCC, 2007). These are emitted from the country's major cities. Solid waste emissions were estimated for urban areas only since waste dumping is prevalent in these areas. Methane generation from these dump sites is very little owing to the low collection rates. There is neither waste separation at the SWDS) nor segregation at sources producing the waste. Engineered landfills are not yet developed in Ethiopia.

In the capital Addis Ababa 70% of the generated solid waste is collected and disposed in the dumpsite, whereas 5% is recycled, 5% is composted and the remaining, approximately 20% of the solid waste is uncollected and dumped in unauthorized areas such as open fields, ditches, sewers, street-sides and all other available open-spaces in the city (Worku, 2011). Open dumping in rural and most growth points generates insignificant amount of CH_4 emissions as aerobic digestion of waste is predominant, hence was not considered in the inventory.

In 2017 the total waste generated was estimated at 2,449.012Gg based on an urban population of 21.61 million and waste generation rate of 113.15kg/cap/y (MoUDC). The amount of waste sent to SWDS was estimated at 2,445.17 Gg based on an average collection rate of 40% of the total generated waste.

There were no methane emissions in 1990 due to the default assumption from the FOD method (2006 IPCC Guidelines) where methane production is assumed to start on the 1st of

January in the year after deposition and have a residence time of 6 months. Methane emissions from SWDS at landfills showed an increase from 73.63 GgCO₂eq in 1990 to 320.71 Gg CO₂eq 2020. The resulting annual CH₄ emissions and trend is presented in Figure 1-7.

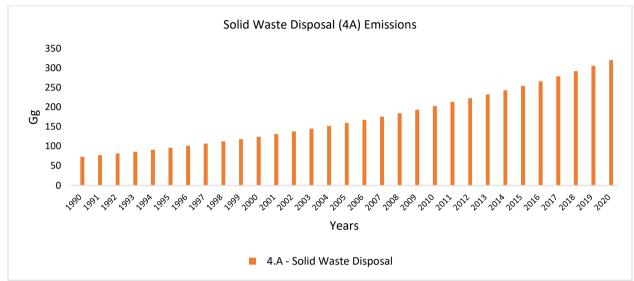


Figure 1-7: MSW Methane emissions trend 1990-2019

a. Methodological issues

Estimation of CH₄ emissions from solid waste was based on the 2006 IPCC Guidelines using a Tier 1 First Order Decay (FOD) method. The National Waste Management Strategy for Ethiopia and IPCC default values were used to determine parameters used in the FOD model. The FOD method assumes that the degradable organic component (degradable organic carbon, DOC) in waste decays slowly throughout a few decades, during which CH₄ and CO₂ are emitted. Ethiopia does not have a country specific methodology for estimating emissions from solid waste handling and therefore default parameters in the 2006 IPCC Guidelines were used where country specific data was not available. The FOD equations 3.2 to 3.6 (2006 IPCC Guideline, Vol 5, Chapter3) were used to estimate the methane emissions from solid waste.

b. Activity data

The transition to use FOD method which requires 50 or more years, led to the need to restore the series of data on Managed Solid Waste (MSW) in Ethiopia from 1960. Statistical data on urban population and default country specific generation rate (113.15kg/cap/yr.) was used for the period 1960 -2019 on urban population in order to form a coherent set of data on historical MSW sent to dump sites. The country waste generation rate of 113.15kg/cap/y (Worku, 2011) was used.

	199 0	1991	199	2 1993	1994	1995	1996	1997	1998	1999	2000	200	01 200	2 2003	2004	2005
Solid Waste	992.7 2	1048. 46	1107 82	7. 1170. 38	1235. 08	1295. 61	1354. 61	1414. 28	1475. 25	1538. 01	1603. 33	167 11	1. 1741 72	. 1814. 85	1890. 53	1968. 76
	2006	2	007	2008	2009	2010	2011	2012	2013	2014	2	2015	2016	2017	2018	2019
Solid Waste	2049.	68 2	135.49	2248.50	2367.34	2493.05	2625.75	2765.85	2910.17	3060.	95 3	217.71	3380.57	3549.41	3724.90	3907.30

Table 1-6: Estimated t	total solid	waste genera	ated (Gg)
------------------------	-------------	--------------	-----------

c. Emission Factors

Methane Correction Factor (MCF)

Estimation of MCF values was based on the weighted average taking into account the distribution of MSW flows into uncategorized and shallow unmanaged landfills. The default MCF of 0.4 and 06 for unmanaged shallow (<5m waste) and uncategorized respectively were used (IPCC, 2007). The weighted MCF is 0.58.

Waste Composition and DOC

Waste composition in the draft Solid Waste Management Strategy was used and is shown in *Table 1-7*.

Degradable Organic Carbon (DOC)

DOC is the portion of organic carbon present in solid waste that is susceptible to biochemical decomposition. Default values for DOC in different waste types is given below in Table 1-7 provided in Volume 5, Chapter 2, Table 2.4.

Waste Type	DOC values (%)
Paper and Cardboard	6.63
Textiles	3.07
Food waste	51.01
Nappies	0.7
Garden and Park Waste	4.45
Wood	7

Table 1-7: Default values for DOC in different waste types

Source:(MUDC)

Fraction of Degradable Organic Carbon which Decomposes (DOCf)

Fraction of DOC_f default value of 0.5 in the 2006 IPCC Guidelines was used (Vol.5, Chapter 3, Page 3.13).

Constant k and half-life t1/2

The half-life value is the time taken for the DOC_m in waste to decay to half its initial mass. The constant k is related to $t_{1/2}$ by the equation:

$k = ln (2)/t_{1/2}$

Equation 1-1: Relationship between half-life and reaction rate constant

Source: (IPCC, 2007)

For Ethiopia in the tropical dry zone default k and $t_{1/2}$ are shown Table 1-8 as provided by the 2006 IPCC guidelines Vol 5 Chapter 3, Tables 3.3 and 3.4.

Table 1-8: Constant k and half-life t_{1/2}

Waste Type	Constant (k)	Half-life t _{1/2}
Paper and Cardboard	0.04	17
Food	0.06	12
Garden and Park Waste	0.05	14
Wood	0.02	35

Source: (IPCC, 2007)

Methane recovered R

There is mostly no methane recovery either for flaring or for energy use at the landfills in Ethiopia. The default value of R = zero is used (2006 IPCC Guidelines (Vol. 5, Chapter 3) was, therefore, used

Oxidation Factor (OX)

The open dumps in Ethiopia are not covered with aerated material hence the default value for OX of zero; according to the 2006 IPCC Guidelines (Volume 5, Chapter 3, Table 3.2) was used.

d. Category-specific QA/QC and Verification

Comparison of selected activity data and regional values was conducted. Analysis of activity data trends along with emission trends along the time series was also performed.

1.7.2 Biological treatment of solid waste-4B

Composting is considered one of the most reliable solid waste treatment options for cities in Ethiopia (FDRE, 2015). The establishment of the solid waste composting project the NAMA Compost that compiled by UNDP under MOUI. Methane and nitrous oxide are the key emission sources from biological treatment of solid waste through composting.

There was a 48% increase in both CH_4 and N_2O from 2019 to 2020 as shown in Figure 1-8.

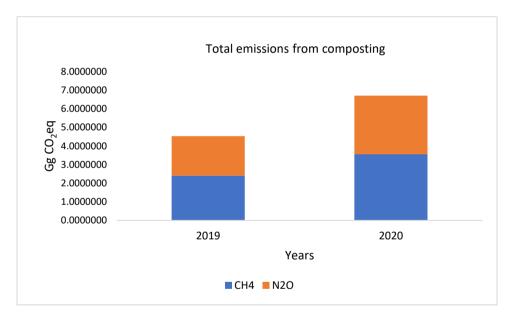


Figure 1-8: GHG emissions from composting

a. Methodological issues

The calculation of CH_4 and N_2O emissions from composting was conducted in accordance with the 2006 IPPC default methodology following Equations 4.1 and 4.2, respectively, in Volume 5 of the 2006 IPCC Guidelines, chapter 4.

b. Activity data

The quantities of composted from the cities were obtained from the MUDC (Table 1-9).

Table 1-9: Waste composting data

Year	Amount of compost produced in Six NAMA compost cities in tones	In Addis Ababa	Total
2019	28,572		28,572
2020	41,492	803	42,295
2021(6 month report)	26,537		26,537

Source: MUDC, 2021

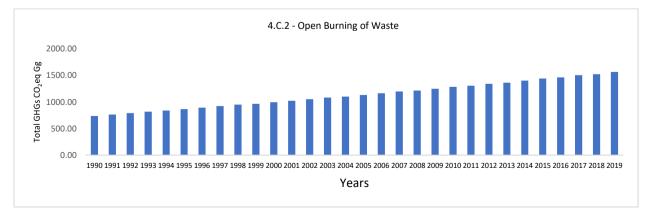
c. Emission Factors

The default emission factors on wet basis for CH_4 and N_2O were 4g/kg and 0.3g/kg, respectively, taken from Table 4.1 in the 2006 IPCC Guidelines, Chapter 4 Volume 5.

d. Category-specific QA/QC

General QA/QC as outlined in section 1.6.1 on solid waste treatment were applied.

1.7.3 Incineration and Open Burning of Waste-4 C


The section covers GHG emissions from open burning of waste. GHG emissions from incineration were not estimated since the data were not available.

1.7.3.1 Waste Incineration-4 C 1

GHG emissions from waste incineration were not estimated. Healthcare waste has been rising given the rising number of private clinics. However, there are currently no adequate facilities for treatment and disposal of healthcare waste (Worku, 2011). The activity data was also not available.

1.7.3.2 Open Burning of Waste-4 C 2

Open burning of waste is frequent in Ethiopia with fires being recorded at dump sites, especially in urban areas. Almost all small urban centres and rural villages do not have waste management systems. Waste is not collected and individual households and commercial establishment dump waste in any open spaces. The urban and rural population (Annex D) was used for estimating waste that is openly burned. Open burning of waste releases CH₄, CO₂, N₂O, NOx, CO, NMVOC and SO₂ emissions. Total emissions from open burning of waste increased from 732.98Gg CO₂eq in 1990 to over 1,577.62 Gg CO₂eq in 2020 (Figure 1-9). The increase in the GHG is directly related to population growth.

Figure 1-9: Total GHG emissions from open burning of waste, 1990-2020 *1.7.3.3 Precursors*

Carbon monoxide (CO) was the main gas emitted, followed by oxides of nitrogen (NOx) over the whole time series, as presented in Figure 1-10.

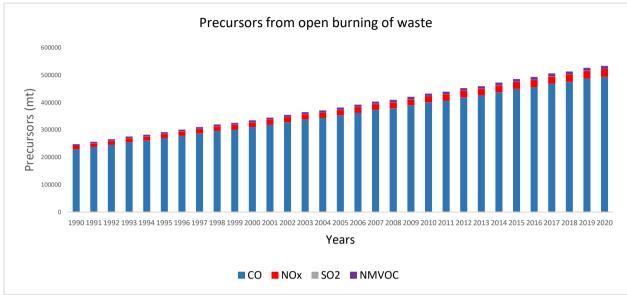


Figure 1-10: Precursors from open burning of waste

1.7.4 Wastewater Treatment and Discharge-4 D

Quantitative data on liquid waste management at city level were not available. Liquid waste in Ethiopia, includes:

- Domestic and Commercial wastewater/sewage consisting of grey water and black
 water,
- Industrial wastewater,
- Agricultural waste water,
- Urban storm water runoff,
- Leachate from landfills/solid waste dumps
- Sludge (septic tanks, industries, and sewerage treatment plants).

Methane and nitrous oxide emissions from the treatment and discharge of liquid wastes and sludge from housing and commercial sources through wastewater sewage collection and treatment systems, pit latrines and discharge into surface waters are covered in this section. Total GHG emissions from wastewater treatment increased from 1,790Gg CO₂eq in 1990 to over 4,190 Gg CO₂eq in 2019 (Figure 1-11). Throughout the time series, domestic wastewater treatment accounted for most emissions.

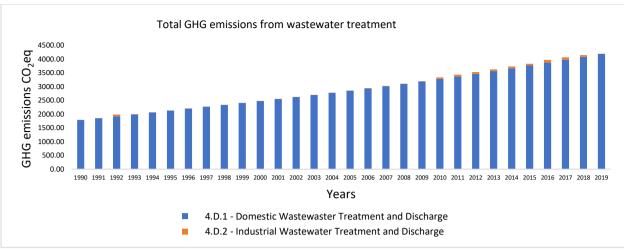


Figure 1-11: Total GHG emission from wastewater treatment

1.7.4.1 Domestic Wastewater Treatment and Discharge-4 D 1

GHG emissions from domestic wastewater have been steadily rising from 1990 to 2019 in line with population growth Figure *1-12*.

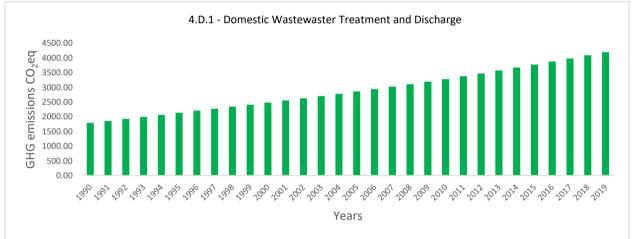


Figure 1-12: Emissions from Domestic wastewater treatment and discharge

a. Methodological issues

Tier 1 methodology was applied, following Decision Tree for CH₄ emissions from domestic wastewater (Figure 6.2, in Chapter 6, Volume 5 of the 2006 IPCCC Guidelines). The Tier 1 method applies default values for the emission factor and activity parameters. This method is considered good practice for countries with limited data, as was the case for Ethiopia in the TNC.

b. Emission Factors and parameters

Default Emission factors were obtained from the IPCC Guidelines (IPCC, 2007) and are shown in Table 1-10.

Table 1-10: Wastewater parameters

Parameter (units)			Value
Emission Factor (kg N2O-N/			0.005
Fraction of industrial and con	(-)	1.25	
Fraction of nitrogen in protei			0.16
	ent - BOD [kg BOD/cap/yr] (rural and urban)		13.505
	ig capacity - B0 [kg CH4/kg BOD] (Centralized	ed, aerobic	0.6
treatment plant, Latrine, Sep			
Nitrogen removed with sludg			0
Fraction of non-consumption			1.1
Fraction of Population Incom	ne Group - Ui [Fraction]		0.62
Rural			0.08
Urban high income			0.3
Urban low income	20.61		
Per capita protein consumpt Emissions from Wastewater	28.61 0		
Degree of utilization - Tij [Fra)	0	
	Type of treatment or discharge	Value	
Income Group	pathway	Value	
Rural	Centralized, aerobic treatment plant	0.1	
Rural	Latrine	0.28	
Rural	Septic system	0.02	
Urban high income	Centralized, aerobic treatment plant	0.37	
Urban high income	0.31		
Urban high income			
Urban low income			
Urban low income	Latrine	0.24	
Urban low income	Septic system	0.17	

c. Time series consistency

The amount of wastewater used for the whole time series was determined from the population figures obtained from CSA.

d. Category-specific QA/QC and Verification

Calculations were performed in spreadsheets to check if the activity data and parameters were correctly entered into the IPCC Inventory Software.

e. Category-specific Recalculations

Recalculations were conducted back to 1990. The comparisons for the reporting years are shown in Table 1-17:

f. Planned Improvements

1.7.4.2 4 D 2 Industrial Wastewater Treatment and Discharge

Methane emissions from mainly the discharge of untreated industry wastewater are covered in this section. The industries covered include alcohol refining; beer and malt; dairy products; fish processing; meat and poultry; sugar refining; vegetable oils, as well as vegetables, fruits and juices. About 90% of the industries in Addis Ababa are discharging their waste waters into nearby water bodies (Worku, 2011). The situation is the same in other cities.

Emissions were consistently low in the years 1990 and 1991, with spike in 1992, then maintaining the low levels up to 2005 Figure 1-12). There was a slight increase in emissions in 2006, which remained constant up to 2009. Another sharp increase was reported from 2010 and gradually fluctuating up to 2015. This was followed by a sharp increase in 2016, gradually declining in 2017 and 2018. The emissions significantly dropped in 2019.

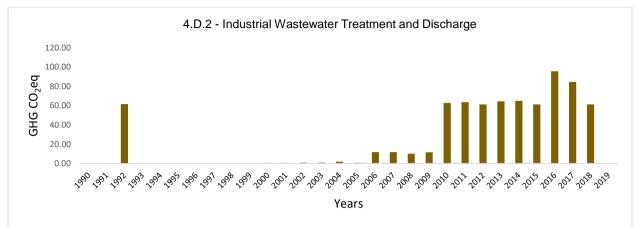


Figure 1-13: Industrial wastewater treatment and discharge

a. Methodological issues

Tier 1 methodology was applied, following the Decision Tree for CH_4 emissions from domestic wastewater (Figure 6.2, in Chapter 6, Volume 5 of the 2006 IPCCC Guidelines). The Tier 1 method applies default values for the emission factor and activity parameters was considered appropriate since data were scarce.

b. Activity data

Activity from production of alcohol refining; beer and malt; dairy products; fish processing; meat and poultry; sugar refining; vegetable oils, as well as vegetables, fruits and juices was used to calculate CH₄ emissions from industrial wastewater (Table 1-11).

Product	Units	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coffee	tonne	0	0	0	0	0	16	31	34	28	0	300	115	259
Beer & malt	tonne				33241.			38830.4	41884	50993.		79950.	89645.	5929
		22251.03	24806	8627.398	22	42979.6	41666.1	6	.51	8	0	36	1	1.8
Meat	tonne	158	292	161	308	683	302	96	615	526	0	1194	849	224
Milk	tonne				1510.5		1485.40	1499.00	1329.	1352.2		3156.4	3795.2	4299.
		1222.276	853.9086	110.9587	85	1597.247	6	2	138	34	0	96	32	172

Table 1-11: Industrial wastewater activity

	unit	2005	200 6	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Coffe e	tonne	563	163 17	1544	2767	1984	1708	1407	19059	13807	591	5278	118	6581
Beer and malt	tonne	67602.41	700 83	72451.4 5	92294.7 2	95712.7 1	130524. 9	169319	181516. 6	258503. 2	300674. 5	183085. 6	393571. 9	2366185
Meat	tonne	208	212	271	271	356	4449	20910	22702	22105	20596	19388	12418	11179
Milk	tonne	4770.199	572 4.61 3	4753.95 5	5166.21 8	5683.08 3	8566.06 7	7781.58 7	8616.60 2	3952.59 4	9237.36 3	10949.0 3	16039.4 3	13041.1 4

Source; CSA

c. Emission Factors and parameters

Default parameters were obtained from the IPCC Guidelines

Table 1-12: Emission Factors and parameters

Type of treatment and discharge pathway or system	MCF 1
Untreated	
Sea, river and lake discharge	0.1
Recovered CH ₄ in each industry sector (Ri) (kg CH4/yr)	0
Sludge removed in each industry sector (Si) (kg COD/yr)	0
Source: (IPCC, 2007).	

d. Time series consistency

Production data were missing for most years and the GHG emissions trends were showed variations related mostly to data inconsistency.

1.7.5 Precursors from wastewater handling

The quantities of precursors from wastewater handling varied owing to data gaps (Figure 1-14).

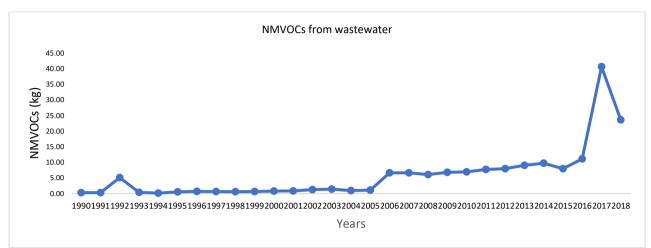


Figure 1-14: Precursors from wastewater handling

1.7.6 Other (please specify) -4 E

This category was not covered since it does not exist in Ethiopia

1.7.7 Long-term carbon storage

Some carbon will be stored over long time periods in SWDS. Wood and paper decay very slowly and accumulate in the SWDS (long-term storage). Carbon fractions in other waste types decay over varying time periods

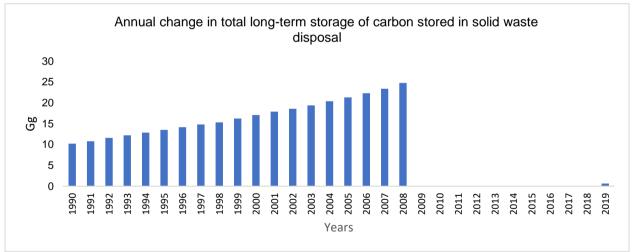


Figure 1-15: Stored carbon

a. Methodological issues

Estimation of CH₄ emissions from long-term carbon storage of carbon stored in solid waste was based on the 2006 IPCC Guidelines using a Tier 1 FOD method. The National Waste Management Strategy for Ethiopia and IPCC default values were used to determine parameters used in the FOD model. The FOD method assumes that the degradable organic component (degradable organic carbon, DOC) in waste decays slowly throughout a few decades, during which CH₄ and CO₂ are emitted. Ethiopia does not have a country specific

methodology for estimating emissions from solid waste handling and therefore default parameters in the 2006 IPCC Guidelines were used where country specific data was not available. The FOD equations 3.2 to 3.6 (2006 IPCC Guidelines, Vol 5, Chapter3) were used to estimate the methane emissions from solid waste.

b. Activity data

The transition to use FOD method which requires 50 or more years, led to the need to restore the series of data on Managed Solid Waste (MSW) in Ethiopia from 1960. Statistical data on urban population and default country specific generation rate (113.15 kg/cap/yr.) was used for the period 1960 -2019 on urban population in order to form a coherent set of data on historical MSW sent to dump sites (Table *1-13*). The country waste generation rate of 113.15kg/cap/y (MUDC) was used.

Table 1-13: Estimated total solid waste generated (Gg)

	199 0	1991	199	2 1993	3 1994	1995	1996	1997	1998	1999	2000	200	01 200	2 2003	2004	2005
Solid Waste	992.7 2	1048. 46	1107 82	7. 1170. 38	1235. 08	1295. 61	1354. 61	1414. 28	1475. 25	1538. 01	1603. 33	167 11	1. 1741 72	. 1814. 85	1890. 53	1968. 76
	2006	20	007	2008	2009	2010	2011	2012	2013	2014	2	015	2016	2017	2018	2019
Solid Waste	2049.6	58 21	35.49	2248.50	2367.34	2493.05	2625.75	2765.85	2910.17	3060.9	95 3	217.71	3380.57	3549.41	3724.90	3907.30

c. Emission Factors

Methane Correction Factor (MCF)

Estimation of MCF values was based on the weighted average taking into account the distribution of MSW flows into uncategorized and shallow unmanaged landfills. The default MCF of 0.4 and 06 for unmanaged shallow (<5m waste) and uncategorized respectively were used (IPCC, 2007). The weighted MCF is 0.58.

Waste Composition and DOC

Waste composition in the draft Solid Waste Management Strategy was used and is shown in Table 1-14.

Degradable Organic Carbon (DOC)

DOC is the portion of organic carbon present in solid waste that is susceptible to biochemical decomposition. Default values for DOC in different waste types is given below in Table 1-14 provided in Volume 5, Chapter 2, Table 2.4 of the IPCC Guidelines.

Waste Type	DOC values
Paper and Cardboard	0.4
Textiles	0.24
Food waste	0.15
Nappies	0.24
Garden and Park Waste	0.20
Wood	0.43

Source: (IPCC, 2007)

Fraction of Degradable Organic Carbon which Decomposes (DOCf)

Fraction of DOC_f default value of 0.5 in the 2006 IPCC Guidelines was used (Vol.5, Chapter 3, Page 3.13).

Constant k and half-life t1/2

The half-life value is the time taken for the DOC_m in waste to decay to half its initial mass. The constant k is related to $t_{1/2}$ by the equation:

 $k = ln (2)/t_{1/2}$

Equation 1-2: Relationship between half-life and reaction rate constant

Source: (IPCC, 2007)

For Ethiopia in the tropical dry zone default k and $t_{1/2}$ are shown Table 1-15 as provided by the 2006 IPCC guidelines Vol 5 Chapter 3, Tables 3.3 and 3.4.

Table	1-15:	Constant k	and	half-life t _{1/2}
-------	-------	------------	-----	----------------------------

Waste Type	Constant (k)	Half-life t _{1/2}
Paper and Cardboard	0.04	17
Food	0.06	12
Garden and Park Waste	0.05	14
Wood	0.02	35

Source: (IPCC, 2007)

Methane recovered R

There is mostly no methane recovery either for flaring or for energy use at the landfills in Ethiopia. The default value of R = zero is used (2006 IPCC Guidelines (Vol. 5, Chapter 3) was, therefore, used

Oxidation Factor (OX)

The open dumps in Ethiopia are not covered with aerated material hence the default value for OX of zero; according to the 2006 IPCC Guidelines (Volume 5, Chapter 3, Table 3.2) was used.

d. Category-specific QA/QC and Verification

Comparison of selected activity data and regional values was conducted. Analysis of activity data trends along with emission trends along the time series was also performed.

1.8 Uncertainty analysis

AD uncertainty was not available; hence uncertainty analysis was not performed. The output from the software is presented in Table 1-16.

Table 1-16: Uncertainty analysis

2006 IPCC Categories	Gas	1990 (Gg CO2 equivalent)	2017 (Gg CO2 equivalent)	Activity Data Uncertainty	Emission Factor Uncertainty	Combined Uncertainty (%)	Contribution to Variance by Category in 2017	Type A Sensitivity (%)	Type B Sensitivity (%)	Uncertainty in trend in national (%)	Uncertainty introduced by AD uncertainty (%)	Uncertainty introduced into the trend in total national emissions
4.A - Solid Waste Disposal												
4.A - Solid Waste Disposal	CH4	227.16	850.28	0.0 0	0.00	0.00	0.00	0.5 3	0.17	0.00	0.00	0.00
4.B - Biological Treatment of Solid Waste												
4.B - Biological Treatment of Solid Waste	CH4	0.00	0.00	0.0 0	0.00	0.00	0.00	0.0 0	0.00	0.00	0.00	0.00
4.B - Biological Treatment of Solid Waste	N2O	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
4.C - Incineration and Open Burning of Waste								-				
4.C.1 - Waste Incineration	CO2	0.00	0.00	0.0 0	0.00	0.00	0.00	0.0 0	0.00	0.00	0.00	0.00
4.C.1 - Waste Incineration	CH4	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
4.C.1 - Waste Incineration	N2O	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
4.C.2 - Open Burning of Waste	CO2	63.71	130.16	0.0	0.00	0.00	0.00	0.1	0.03	0.00	0.00	0.00
4.C.2 - Open Burning of Waste	CH4	560.45	1145.04	0.0	0.00	0.00	0.00	1.5 0	0.22	0.00	0.00	0.00
4.C.2 - Open Burning of Waste	N2O	108.83	222.34	0.0	0.00	0.00	0.00	0.2 9	0.04	0.00	0.00	0.00
4.D - Wastewater Treatment and Discharge								Ū				
4.D.1 - Domestic Wastewater Treatment and Discharge	CH4	1056.24	2346.81	0.0 0	0.00	0.00	0.00	2.7 8	0.46	0.00	0.00	0.00
4.D.1 - Domestic Wastewater Treatment and Discharge	N2O	734.16	1631.20	0.0 0	0.00	0.00	0.00	1.9 3	0.32	0.00	0.00	0.00
4.D.2 - Industrial Wastewater Treatment and Discharge	CH4	0.17	84.34	0.0 0	0.00	0.00	0.00	0.0 2	0.02	0.00	0.00	0.00
4.E - Other (please specify)		227.16	850.28	0.0	0.00	0.00	0.00	0.5 3	0.17	0.00	0.00	0.00

1.9 Recalculations

The 1994 recalculated figure for 4A (Solid waste) was higher by over 144% while the one for 2013 was higher by over 80%. Significant differences were obtained for open burning (4C) with the recalculations for both INC and SNC being significantly higher. The differences emanated from the use of more complete data, that calculating emissions from open burning for both rural and urban areas in the TNC.

Table 1-17: Recalculations of INC and SNC.

		INC		SNC				
Category	1	994	% Difference		% Difference			
	Reported	Recalculated		Reported	Recalculated			
4A	114.97	280.8	144.25%	3582.07	703.92	-80.35%		
4C	47.33	834.9	1664.06%	103.67	1359.3	1211.22%		
4D	1706.12	263.16	-84.58%	3734.87	3630.36	-2.80%		

1.10 Planned improvements

Table 1-18: Planned	Improvements
---------------------	--------------

Gap or constraint	Planned improvement	Timing
Default parameters on solid waste were	Conduct a national waste survey determine the	
used	quantities of waste generated, composition and waste streams	
Collection of data was difficult due to lack of system for collecting, transmitting waste data	Set up waste sector activity data collection and transmission system	
Activity data and parameters used for estimating GHG emissions from the previous NCs were not available	Enhance the inventory archiving system	
Uncertainty analysis was not performed due to lack of data	Data providers to provide uncertainties when they submit data	

2 References

FDRE, 2015. *Ethiopia's Second National Communication to the UNFCCC,* Addis Ababa: FDRE.

GOT, 2016. *Climate Resilient and green Economy.* Addis Ababa: National Planning Commission.

GoT, 2021. Updated Nationally detemirned Contribution, Addis Ababa: GoT.

GoT, n.d. Environmental Policy of Ethiopia, Addis Ababa: MInistry of Environment.

IPCC, 2007. 2006 IPCC Guidelines for Greenhouse Gas Inventories, Volume 5, Waste. Hayama: IGES.

Worku, H., 2011. Ethiopia Solid Waste Management Strategy, Addis Ababa: s.n.

ANNEXES

Source	Typical Waste Generators	Types Of Solid Wastes
Residential	Single and multi-family dwellings	Food wastes, paper, cardboard, plastics, including tin-plastic bags, textiles, leather, yard wastes, wood, glass, metals, ashes, special wastes, (e.g., bulky items, consumer electronics, batteries, oil, tires), and household hazardous wastes.
Industrial	Light and heavy manufacturing, fabrication, construction sites, and power plants	Housekeeping wastes, packaging, food wastes, construction and demolition materials, hazardous wastes, ashes, and special wastes.
Commercial	Sores, hotels, restaurants,	Paper, cardboard, plastics, wood,
	markets office buildings.	food wastes, metals, special wastes, hazardous wastes.
Institutional	Schools, hospitals, prisons, government centres.	Same as commercial.
Construction and demolition	New construction sites, road repair, renovation sites, demolition of buildings.	Wood, steel, concrete, dirtetc.
Municipal Services	Street cleansing, landscaping, parks, beaches, other recreational areas, water and wastewater treatment plants	Street sweepings; landscape and tree trimmings; general wastes from parks, beaches, and other recreational areas, sludge.
Process	Heavy and light manufacturing, refineries, chemical plants, power plants, mineral extraction and processing	Industrial process wastes, scrap materials, off-specification products, slag, tailings.

Annex A: Sources and Types of General Solid Wastes in Ethiopia

Source: World Bank, May 1999.

Annex B: Housing units	of urban areas by type of toil	let facility by region

			Type of t	toilet facili	t y		r		
Region		All housing units	Has no toilet	Flush Toilet		VIP Latrine		Pit Latrine	
				Private	Shared	Private	Shared	(Private)	Shared)
Country	No.	2,929,816	851,619	99,095	91,787	75,228	189,394	548,439	1,074,254
Tigrav	No.	231.826	115.399	10.819	23.638	7.618	17.396	17.170	39.786
Afar	No.	43,762	24,663	984	795	1,277	2,861	3,760	9,422
Amhara	No.	591.428	219.987	7.448	11.096	8.242	21.447	98.629	224.579
Oromiya	No.	836,074	213,281	12,133	10,573	15,226	26,463	215,953	342,445
Somali	No.	91.241	46.086	1.193	1.886	3.192	5.541	13.684	19.659
BenShangul	No.	27.346	7,448	273	64	324	587	7,609	11,041
SNNPR	No.	342,224	71,067	4,484	4.088	6.554	10,322	113.918	131,791
Gambela	No.	19.080	10.752	314	185	285	994	1.781	4.769
Harari	No.	44,913	21,916	727	872	1,400	2,861	5,214	11,923
Addis	No.	628.986	90.206	58.123	35.684	28.903	95.520	62.009	258.541
Dire Dawa	No.	72,936	30,814	2,597	2,906	2,207	5,402	8,712	20,298

Source: CSA, 2008.

Textile	BOD	NH+4	NO-2	PO4	рН	SS	Cd	Cr	Pb
Edget Yarn	81.5	1.25	5	2.26	10.27	54.50	<0.1	<0.1	0.1
Nifas Silk Thread	10	0.15	3.1	1.69	8.01	86	<0.1	<0.1	0.2
Mean	45.8	0.7	4.1	2.0	9.1	70.3	<0.1	<0.1	0.2
Tanneries	BOD	NH+4	NO-2	PO4	рН	SS	Cd	Cr	Pb
Addis Tannery	2428.	170.5	63.75	30.1	9.45	1350.5	<0.1	0.5	<0.1
Awash Tannery	914	52.65	6.25	6.18	3.805	664.5	<0.1	7	<0.1
Dire Tannery	2782	903.75	187.5	17.39	5.96	1615	0.4	1.5	3
Walia Tannery	1644.	73.5	17.64	11.26	10.45	997	<0.1	1.3	0.3
Mean	1942.	300.1	68.8	16.2	7.4	1156.8	0.4	2.6	1.7
Metal and non-metal	BOD	NH+4	NO-2	PO4	рН	SS	Cd	Cr	Pb
Marble Industry	23.5	0.708	3.375	2.55	8.74	634.5	<0.1	<0.1	0.1
Addis Machine	16.6	0.41	6.7	0.1	8.24	31.5	<0.1	<0.1	<0.1
United Abilities	3.65	0.33	1.2	0.36	7.08	1.1	<0.1	<0.1	<0.1
Mean	14.6	0.5	3.8	1.0	8.0	222.4	<0.1	<0.1	0.1
Chemical industries	BOD	NH+4	NO-2	PO4	рН	SS	Cd	Cr	Pb
Addis Tyre	13.5	2.20	1.6	0.55	8.27	13	<0.1	<0.1	<0.1
Addis Gas and Plastic	24.65	7.99	2.7	7.98	8.89	272.5	<0.1	<0.1	<0.1
Chora Gas and	85	0.48	0	2.9	10.1	27671	0.1	0.4	<0.1
Equatorial paint	575.5	15.38	0	0.28	8.305	3661	N.D.	N.D.	N.D.
Gullele soap	568	21.25	200	39.27	13.495	205.5	0.3	0.2	<0.1
Nifas silk paint	228.5	21.9	23.75	7.2	6.58	3612.5	<0.1	0.1	0.7
Mean	249.2	11.5	38.0	9.7	9.3	5905.8	0.2	0.2	0.7
Beverage factories	BOD	NH+4	NO-2	PO4	рН	SS	Cd	Cr	Pb
Addis Soft Drinks	581.5	1.97	0	5.11	6.695	94	<0.1	<0.1	0.5
Awash Winery	3334	53.40	9	16	7.465	3249	<0.1	<0.1	<0.1
Moha Soft Drinks	407.5	8.9	13.5	19.65	12.315	336.5	<0.1	<0.1	0.3
National Alcohol and	185	154	0.2	49.88	7.91	2345	0.1	0.1	0.1
St. George Brewery	55	12.35	1.05	2.045	6.635	36	<0.1	<0.1	<0.1
Mean	913	46.1	4.8	18.5	8.2	1212.1	0.1	0.1	0.3
Food industries	BOD	NH+4	NO-2	PO4	рН	ss	Cd	Cr	Pb
Addis Ababa Abattoirs	814.5	76	4.15	10.2	8.5	356	<0.1	0.1	<0.1
Addis Mojo Edible Oil	317	12.75	30	51.75	8.425	3706.5	<0.1	<0.1	<0.1
Mean	565.8	44.4	17.1	31.0	8.5	2031.3	<0.1	0.11	<0.1

Annex C: Characteristics of wastewater effluents from selected industries in E	thiopia

Source: (Worku, 2011)

Annex D: Population

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Total	47.89	49.61	51.42	53.30	55.18	57.05	58.88	60.70	62.51	64.34	66.22	68.16	70.14	72.17	74.24	76.35
Rural	6.04	6.38	6.74	7.13	7.52	7.89	8.25	8.61	8.98	9.36	9.76	10.17	10.60	11.05	11.51	11.99
Urban	41.84	43.23	44.68	46.17	47.66	49.16	50.64	52.09	53.53	54.98	56.46	57.99	59.54	61.12	62.73	64.36

2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
78.49	80.67	82.92	85.23	87.64	90.14	92.73	95.39	98.09	100.84	103.60	106.40	109.22	112.08	114.96
12.48	13.00	13.69	14.41	15.18	15.99	16.84	17.72	18.64	19.59	20.58	21.61	22.68	23.79	24.94
66.01	67.67	69.23	70.82	72.46	74.15	75.89	77.67	79.46	81.25	83.02	84.79	86.55	88.29	90.02

Annex E: Waste sector emissions

Table A 1: CO₂ Emissions from Waste Sector

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
emissio ns (Gg)	63. 71	66. 00	68. 41	70. 90	72. 57	75. 02	77. 43	79. 82	82. 20	83. 63	86. 08	88. 59	91. 17	93. 80	95. 36	98. 06
(09)	2006	2007	2008	2009	-			-								
	2000	2007	2000	2009	2010	2011	2012	2 201	3 20	14 2	015	2016	2017	2018	2019	2020

Table A 2: CH₄ emissions from waste sector

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
emission																
S	80.5	83.4	89.4	89.8	92.7	95.9	99.1	102.3	105.4	108.2	111.5	114.9	118.4	122.0	125.2	128.9
(Gg)	0	6	9	0	0	3	4	1	8	9	9	8	8	5	6	1
(09)	U	Ŭ	0	Ŭ	Ŭ	Ű			Ŭ	Ű	Ű	Ū	Ū	0	Ū	•
(09)	2006	2007	2008	20	09 2	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
emission	2006	2007		20	09 2	2010	2011	2012	2013			2016	2017	2018		2020
	2006 133.2	2007	2008		09 2 14.6	2 010 151.3	2011 155.2	2012 159.6	2013 163.8			2016 179.1	2017 183.5	2018 186.8		2020 73.1

Table A 3: N₂O emissions from waste sector

	1990	1991	1992	1993	1994	1995	1996	199	7 199	3 19	99	2000	2001	2002	2003	2004	2005
emissions																	
(Gg)	2.72	2.82	2.92	3.03	3.13	3.23	3.34	4 3.4	14 3.5	4 3	.64	3.75	3.86	3.97	4.09	4.20	4.32
	2006	2007	2008	200	9 20	10 2	011	2012	2013	2014	2	2015	2016	2017	2018	2019	2020
emissions	2006	2007	2008	200	9 20	10 2	011	2012	2013	2014	2	2015	2016	2017	2018	2019	2020 0.76

Table A 4: Waste sector emissions by subcategory 1990-2019

	199 0	199 1	199 2	199 3	199 4	199 5	199 6	199 7	199 8	199 9	200 0	200 1	200 2	200 3	200 4	200 5
4.A - Solid Waste Disposal	73.	77.	81.	86.	91.	96.	101	107	112	118	124	131	138	145	152	159
	63	57	74	32	16	25	.55	.06	.77	.71	.89	.39	.16	.06	.22	.79
												101	104	107	109	112
4.C.2 - Open Burning of	732	759	787	815	834	863	890	918	945	962	990	9.2	8.9	9.2	7.1	8.2
Waste	.98	.34	.10	.75	.90	.15	.92	.36	.75	.20	.34	7	2	6	4	7
4.D.1 - Domestic	179	185	192	199	206	213	220	226	233	240	247	254	262	269	277	285
Wastewater Treatment and	0.4	4.7	2.5	2.5	3.0	2.8	1.5	9.3	7.0	5.6	5.9	8.3	2.4	8.2	5.6	4.3
Discharge	0	9	9	8	7	7	0	2	0	2	7	0	3	7	2	9
4.D.2 - Industrial																
Wastewater Treatment and	0.1	0.1	61.	0.2	0.0	0.0	0.4	0.4	0.3	0.4	0.5	0.5	0.8	0.9	1.8	0.7
Discharge	7	9	43	5	9	0	5	2	9	3	2	4	3	2	5	0

	200	200	200	200	201	201	201	201	201	201	201	201	201	201	202
	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0
4.A - Solid Waste Disposal	167.	175.	184.	193.	203.	213.	223.	233.	243.	254.	266.	279.	292.	306.	320.
	64	85	46	70	54	91	17	06	59	76	59	09	27	13	71
4.C.2 - Open Burning of	115	119	121	124	127	130	133	135	139	143	145	149	151	155	157
Waste	9.94	2.23	0.78	4.62	9.75	0.40	7.72	9.30	7.90	6.96	8.18	7.54	8.07	7.75	7.62
4.D.1 - Domestic Wastewater Treatment and Discharge	293 4.51	301 6.20	310 0.02	318 6.67	327 6.63	337 0.10	346 6.82	356 6.23	366 7.49	376 9.98	387 3.46	397 8.02	408 3.62	419 0.33	0.00
4.D.2 - Industrial Wastewater Treatment and Discharge	11.7 7	11.8 1	10.2 1	11.6 2	62.6 6	63.4 9	61.2 0	64.3 4	64.7 5	61.2 0	95.4 5	84.3 4	61.2 0	0.13	0.00

Table A 5: Total GHG emissions from wastewater treatment

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
emissi																
ons	1790.	1854.	1984.	1992.	2063.	2132.	2201.	2269.	2337.	2406.	2476.	2548.	2623.	2699.	2777.	2855.
(Gg)	57	97	02	84	16	87	95	74	39	05	49	85	26	19	48	09
							•									
	2006	2007	200	e 20	09	2010	2011	2012	2013	2014	2015	20	16	2017	2018	0040
	2000	2007	200	20	09	2010	2011	2012	2013	2014	2015	20	10 1	2017	2010	2019
emissio	2000	2007	200	0 20	109	2010	2011	2012	2013	2014	2015	20		2017	2018	2019
emissio ns	2946.2				198.2	3339.2	3433.5	3528.0	3630.5	3732.2				4062.3	4144.8	4190.4

Table A 6: Precursors from open burning of waste

	1990	1991	1992	1993	1994	1995	199 6	1997	1998	1999	200	00 20	01 2002	2003	2004	2005
emissi	047.7	050.0	000	075	7 000	0 004 7		040.4	040.7	005.0		4 7 0	4 054		070.0	004.4
ons (Gg)	247.7 871	256.6 978	266. 082	275. 68			301. 18	310.4 579	319.7 172	325.2 776	33	4.7 34 908 5			370.8 927	381.4 181
r				1						1	T					
	2006	2007	20	08	2009	2010	2011	2012	2013	2014		2015	2016	2017	2018	2019
emissio																
ns	392.12	403.0		9.30	420.75	432.62	439.60	452.22	459.51	472.	56	485.77	492.94	506.25	513.1	526.60
(Gg)	37	0	5	93	03	76	74	43	81		61	17	47	02	93	41