

Greening EU Cooperation

Session 16: Additional Green Financial Solutions

Join the SLIDO

QR CODE

What other Green Financial solutions have you come across?

Joining Link:

https://app.sli.do/event/9jvwssanHYrDkjbZiSkkJm

Additional Green Financial Solutions

- Debt for nature swaps
- Carbon Credit
- Parametric Insurance
- Conservation Trust Funds

Note; The list is not exhaustive

Debt for nature swaps:

Turning a Nation's Debt into Environmental Protection

Debt for nature swaps: Two Big Challenges, One Solution

Many developing countries face a double bind:

- High National Debt
- Rich Biodiversity

How can a country pay its debts and afford to protect its environment?

 A debt-for-nature swap is a financial deal that reduces a country's debt in exchange for a commitment to invest in local environmental conservation.

Debt for nature swaps:Protecting the Galápagos Islands (Ecuador, 2023)

- The Debt: Ecuador had over \$1.6 billion in commercial debt.
- The Swap: converted that debt into a new \$656 million "Galapagos Blue Bond" with better terms. This is a 60% discount.
- The Result: The swap generates an estimated \$323 million dedicated *specifically* to protecting the unique and fragile ecosystems of the Galápagos Islands.
- The Win:
 - Ecuador gets significant debt relief that leads to better debt service and credit rating
 - 2. long-term conservation funding for Galapagos Islands protection.

Greening EUcooperation Integrating environment & climate change

Debt-for-nature swaps

Debt-for-nature swaps first started in late 1980's and are starting to balloon in size

Carbon Credits

EVOLUTION OF REVENUE BY CARBON PRICING INSTRUMENT

Source: World Bank 2024

European

- 1 carbon credit = 1 tonne of CO₂ avoided or sequestered (1 tCO2e).
- Carbon credit are generated by projects (reforestation, mangrove restoration etc)
- Carbon Pricing: 2 instruments: 1) the carbon tax sets a price per tonne of CO2,
 - 2) Carbon markets are **trading systems** in which carbon credits are sold and bought => the Emissions Trading System (**ETS**) sets a maximum quantity

Corresponding Adjustments

Host countries don't use the GHG emission reductions towards their own target (NDC). Only the buyer country does so.

Design of carbon project

Project Stakeholder

- Carbon project developper
- Owner of facility/land
- Investor
- Community
- Buyer of credits
- Buyer country

Host Country

Article 6

Carbon Credit Creation

- GHG reductions: 1ton CO2 = 1 credit
- Process: validation/verification, project documents
- Auditors
- Integrity issues checked:
 - Quantification protocols
 - Meeting additionality
 - Ensuring permanence

Parametric Insurance

Innovative Solutions
Clear Triggers
Fast Payouts

Parametric Insurance

Skyrocketing Climate-Driven Losses

- \$600 billion Global Climate-related insurance losses in past 20 yrs.
- In 2024, insured natural catastrophe losses exceeded \$140 billion
- Now account for 42% of all claims, up from 31% a decade ago

Rising Premiums

- Premium forecast to rise by 50 percent by 2030
- In some places, insurers have **exited high-risk zones**. This has shifted the financial burden increasingly onto **public authorities**.

What is Parametric Insurance?

- It's about 'what happened,' not 'what was lost."
- Define the area/asset to be covered by insurance
- Based on a specific, measurable event (the 'parameter' or 'trigger')
- When the event reaches a pre-defined intensity or threshold.
- Pays out automatically a pre-agreed amount
 - No need for lengthy claims assessments.
 - Lower administrative costs and reduced post-disaster delays

Context

- Location: 160 km of coastline in Quintana Roo, part of the Mesoamerican Barrier Reef (2nd largest in the world).
- Economic Value: Up to \$10 billion/year from tourism dependent on healthy reef ecosystems.

Case Study 1 Coral reef in Mexico (1/2)

- Risk Assessment Findings 2016 TNC analysis showed:
- Storm damage to buildings could triple without the reef's natural protection.
- Reefs act as natural coastal barriers, absorbing wave energy and reducing storm impact.

- Insurance Mechanism Developed
- Parametric insurance model based on economic value of reef.
- Trigger: Wind speed exceeding a threshold in a predefined area.

Case Study 1 Coral reef in Mexico (2/2)

§ Funding Model of the parametric catastrophe insurance

- Local government collects fees from Coastal tourism businesses, property owners and local municipalities with a portion going to Coastal Zone Management Trust (CZMT)
- CZMT manages funds for reef protection.
- CZMT has contractual obligations with both the insurance company, which
 provides the parametric insurance policy, and the reef restoration team
 'Brigade',
- Real-World Activation: Hurricane Delta (2020) triggered payout.
 - \$800,000 released to CZMT.
 - Enabled fund reef recovery and restoration activities, including
 - Deployment of ~80 Brigade members.
 - Stabilisation of 1,200 coral colonies.
 - Transplanting of 9,000 coral fragments.

***** Impact

- Minimise storm damage to coastal communities
- Enhance reef recovery whilst being cost-effective
- Estimated costs of these repairs are lower than artificial measures, such as building a seawall, but would cost about US\$ 1 million per km.
- Nature-positive outcomes and capture opportunities coverage

Case Study 2: Papua New Guinea Telecommunications Infrastructure Against Earthquake Risk

🌑 Context & Background

- SOE PNG Co., offers wholesale services to the information and communication industry, including the installation and oversight of submarine fibre optic cables
- Vulnerable to earthquakes, and the SOE can't find a private insurer.
- PCRIC Parametric Insurance Model

PNG collaborated with

- Pacific Catastrophe Risk Insurance Company (PCRIC)
- Risk solutions company, Willis Towers Watson
- Data from the Global Earthquake Model Foundation

Exposure covered: Event response costs to repair submarine fibre optic cable

breakage

Event: Earthquake

Trigger: number of sites affected and surpass their Ground-shaking threshold

according to their category.

Papua New Guinea Telecommunications Infrastructure Against Earthquake Risk

The policy uses different site types from A to E, associated with different thresholds to 'trigger':

- A. Shallow water sites
- B Deep water sites where potential debris flow (e.g. submarine landslides)
- C. Sites that are not on the network but correspond to potential debris flow sources
- · D. Sites with near-shore cable landing points
- E. Sites at cable junctions.

	Ground-	Ground-shaking threshold (PGA) for each calculation site category				
	Tri	Trigger Thresholds (indicative MMI equivalent for information only)				
	Category A	Category B	Category C	Category D	Category E	
5	PGA 0.23g	PGA 0.18g	PGA 0.13g	PGA 0.13g	PGA 0.18g	
	~MMI 7.1	~MMI 6.7	~MMI 6.2	~MMI 6.2	~MMI 6.7	

Payouts were validated using historical stress testing. For every event, 1 or more sites could be triggered. Events that are only affecting a few sites are likely to be less impactful and cost less in repairs. As such, the structure corresponds to the following:

- When 2 sites surpass their PGA threshold, then a 10% pay-out is made
- When 5 sites surpass their PGA threshold, then a 40% pay-out is made
- When 8 sites surpass their PGA threshold, then a 70% pay-out is made
- When 12 sites surpass their PGA threshold, then a 100% pay-out is made

The global parametric insurance market

- Valued at USD 16.2bn in 2024, a small share of the global insurance market at more than USD 10tr.
- CAGR of 12.6% between 2025 and 2034 to USD 51.3 billion.
- De-risking solution: Potential to unlock billions for nature-based climate solutions.

Critical steps:

- Identifying exposure to be covered/event/trigger, analysing, and containing these issues
- Complex risk management approaches.
- Risk assessment includes advanced models, IOT, other artificial intelligence components and even data mining.
- However, scaling parametric solutions will require overcoming hurdles:
 - Precise trigger design
 - Data consistency
 - Risk standardisation.

Source: https://www.gminsights.com/industry-analysis/parametric-insurance-market

Key Benefits of Parametric Insurance

Speed of Payout

Transparency

Reduced Basis Risk

Reduced Disputes

Coverage for Hard-to-Insure Risks

Potential to unlock billions for nature-based climate solutions

Flexibility & Customisation

Pro Active Risk Management

Conservation Trust Funds (CTFs)

Private vs Public Financial Sector Approches

	PRIVATE	PUBLIC
Objectives	 Opportunity driven ROI (efficiency) & Shareholder Value Short-Term Growth Risk-Adjusted Returns 	 Policies Public Welfare/ Public Interest Economic Stability & L-T Growth Redistribution of Income & Wealth Address market failures Fiscal Sustainability
Contraints	 Market Competition Access to Capital (Liquidity/CCY, S/H demand) Regulatory Compliance 	 Political and Social Pressures Budgetary Limits Legal and Constitutional Frameworks Transparency and Accountability Intergovernmental Relations Economic Conditions
Timeline 23	Short to Medium TermInvestment HorizonsFlexibility	Mid to Long-TermBudget CyclePolicy HorizonsLegacy Issues