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Abstract 
 
The Amazon rainforest, a vital global ecosystem, is facing significant threats from the loss of intact 
forest through deforestation and degradation. This report provides an overview of recent forest 
changes in the Amazon, focusing on Brazil, the country with the largest portion of the Amazon.  
 
Based on the JRC cloud-computed, remote sensing – based, large-scale tropical forest monitoring 
approach, maps and statistical estimates on forest cover changes from 1990 – 2023 are provided 
in this report for the whole region as well as for the different Amazon countries. The report contains 
a discussion about the drivers of deforestation, such as agricultural expansion, and forest 
degradation (e.g. illegal or unsustainable selective logging, forest fires). These activities have severe 
consequences for biodiversity, climate regulation, and the livelihoods of millions of people. In 
addition, a dedicated chapter on forest regrowth in the Amazon biome shows its spatial distribution 
and its changes over time, and provides a detailed analysis of its growth dynamics and their value 
regarding biodiversity and carbon storage. 
 
Understanding the changes in the forest is crucial for developing effective strategies to protect the 
Amazon. By identifying vulnerable areas and understanding the underlying drivers of deforestation, 
forest degradation and regrowth, informed and targeted interventions can be planned and 
implemented to mitigate these threats.
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Foreword 

The Amazon rainforest biome is a vital ecosystem that supports 10% of global biodiversity and 47 
million people, including 2 million indigenous people. However, this ecological marvel faces 
unprecedented threats. Since the 1970s, road construction and agricultural expansion have led to 
the loss of 17% of the forest. This loss is accompanied by widespread degradation of remaining 
forests, caused by factors such as illegal or unsustainable selective logging, forest fires, edge 
effects and droughts. 

The Amazon's ecological significance is profound. As a vast carbon storage, it plays a critical role in 
mitigating climate change by absorbing vast amounts of carbon dioxide from the atmosphere. It 
also regulates regional and global weather patterns, thereby influencing rainfall distribution and air 
temperature across South America and beyond. Moreover, the Amazon is a biodiversity hotspot, 
harbouring countless plant and animal species, many of which are endemic to the region. 

To address these challenges and safeguard the future of the Amazon biome, it is imperative to have 
accurate and timely information about its condition. Earth observation technology has emerged as a 
powerful tool for monitoring forest cover changes. By analysing satellite imagery, scientists can 
track deforestation rates, identify areas of forest degradation and regrowth, assess the impact of 
human activities on the ecosystem, and guide effective forest restoration strategies. 

Within the Neighbourhood, Development and International Cooperation Instrument Global Europe, 
the AMAZONIA+ programme includes action plans to be implemented in the Amazon Basin 
countries: Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Suriname and Venezuela. As a part of its 
response to this mounting crisis of the Amazon forest, the European Commission and its member 
states launched a Team Europe Initiative (TEI) for the Amazon to address some of the key drivers of 
deforestation and forest degradation. The AMAZONIA+ programme seeks to strengthen the 
conditions and ability of the Amazon Basin countries to combat deforestation, forest degradation 
and its main drivers through the promotion of ambitious and effective policy-making and 
implementation, improved statistics, effective forest monitoring systems, and inter-sectoral, multi-
level, multi-actor and regional articulation. The Amazon Fund, currently containing more than USD 
700 million donated by the EU, Norway, Germany, and others, has been reactivated in 2023 and 
now supports a large number of activities related to environment, bio-economy and society, mostly 
located in the Brazilian Amazon. 

The European Union's Joint Research Centre (JRC) has been at the forefront of using satellite data 
to monitor the Amazon rainforest for more than 30 years. Through its Tropical Moist Forest dataset, 
the JRC provides detailed information on changes in forest cover, including deforestation, 
degradation and regrowth. This dataset offers valuable insights into the drivers of deforestation, 
such as agricultural expansion, infrastructure development and land grabbing. In parallel, the JRC 
develops the ‘EU Observatory on Deforestation and Forest Degradation’ that aims to provide 
scientific evidence with regard to global deforestation and forest degradation and related trade.   

This report presents updated forest cover change statistics for the Amazon region up to the end of 
2023, including country-specific trends and historical context. For the Brazilian Amazon, data is also 
included on deforestation and degradation for the first ten months of 2024. An analysis of the 
occurrence of secondary forests in the entire Amazon biome rounds up the report. Secondary 
forests regrow on abandoned deforested lands. They have an important role in carbon 
sequestration, reversing soil degradation, biodiversity recuperation and reconnecting isolated forest 
patches, and act as buffer for intact old-growth forests.  
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We hope the report will provide information to various stakeholders on the status of deforestation, 
forest degradation trends and forest regrowth in the Amazon region. 

 

 

 

Greet Janssens-Maenhout 

Head of Forests and Bioeconomy Unit 

Directorate Sustainable Resources 

Joint Research Centre 

European Commission 
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Executive Summary 

In 2023, the JRC-TMF dataset on Tropical Moist Forests reports a 19% decrease in forest 
disturbances in the Pan-Amazon region compared to year 2022 (25,685 km2 of new disturbances in 
2023 vs. 35,480 km2 in 2022) - disturbances including both deforestation and forest degradation. 
The Amazon countries show different trends in forest cover change. Forest disturbances in the 
Guiana Shield countries (Guyana, Suriname and French Guiana) and Venezuela increased in 2023 
compared to 2022 (by 90% and 49%, respectively), while Bolivia showed only a slight increase in 
2023 (2%). In all other countries, forest disturbances decreased in 2023, ranging from 17% (Peru) 
to 32% (Ecuador), with Colombia and Brazil being slightly below (32% and 24%, respectively). 

The overall annual new disturbed forest area in the Brazilian Legal Amazon decreased by 26%, 
from 22,074 km2 in 2022 to 16,455 km2 in 2023, according to JRC-TMF. The reported decrease was 
supported by statistics from DETER, the near-real-time deforestation and forest degradation 
detection system from the Brazilian National Space Research Institute (INPE), that also showed a 
decrease of forest disturbances of 27%, from 28,291 km2 in 2022 to 20,669 km2 in 2023 (yearly 
accumulated deforestation and forest degradation alerts). 

This report also provides an overview regarding forest disturbances in the Brazilian Legal Amazon 
for the first ten months in 2024, as reported by the INPE-DETER alert system. DETER shows a 
decrease of 18% and an increase of 376% between 2023 and 2024 (January-October period) for 
deforestation and forest degradation (by illegal or unsustainable selective logging and forest fires), 
respectively. The huge increase for forest degradation alerts is due to the large areas of forest fires, 
specifically in September and October 2024. The DETER forest fire alerts have skyrocketed by 928% 
in the first ten months of 2024, compared to the same period in 2023, favoured by the intense 
drought in the region. It is notable that in 2024 the DETER deforestation alerts decreased 
considerably while forest degradation alerts surged. A second, independent deforestation alert 
system for the Brazilian Amazon, IMAZON-SAD, reports 8% deforestation decrease between 2023 
and 2024 (period January to October). 

Secondary tropical forests in the Amazon play an increasing role in mitigating soil degradation, 
carbon sequestration, and biodiversity recuperation and as protection buffer for adjacent intact old-
growth forest. JRC-TMF maps in 2023 show ~84,000 km2 of secondary forest in the Pan-Amazon, 
including forest regrowth on previously abandoned pastures or crop fields and after severe 
wildfires. While 75% of the secondary forests in 2023 were less than 10 years old, only 6% were 
20 or more years old. More than 3/4 (78%) of secondary forests were still standing in 2023, 
whereas 22% were re-deforested or burned after 2013. A large part of the secondary forests 
regrows naturally, i.e. through natural seed dispersal from the neighbouring forest. The natural 
forest restoration success depends on many factors like e.g. the distance to the next forest patch 
and its floral and faunal ‘intactness’ and the past land use and intensity. An alternative is the 
assisted forest restoration by direct seeding, or seedling planting, or e.g. by the installation of 
establishing artificial perches for frugivorous birds to help the natural seed dispersing process. 
However, areas of assisted forest restoration are still very limited. 

The current Brazilian Government has shown important steps towards a progressive environmental 
policy, like the re-strengthening of forest monitoring and environmental law enforcement 
institutions (that lead to the curbing of Brazilian deforestation in 2023 and 2024), the immediate 
reaction to the Yanomami humanitarian crisis at the beginning of 2023 and the creation of a 
Ministry of Indigenous Peoples. However, with the new conservative Brazilian Congress in place 
since 2022, the implementation of new or stronger environmental policies has become more 
difficult. The Congress is launching important law proposals (PLs) that would, if passed, hamper 
Brazilian environmental protection and indigenous rights. The current government has expressed to 
be in favour of projects in the Amazon, e.g. asphalting of the BR-319 Highway, oil and gas 
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exploration, the Ferrogrão railway line, which are seen by many as at least ‘problematic’ in relation 
to Amazon environmental protection. 
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About this report  
 

The focus in this report is on the scientific findings concerning forest cover changes in the Amazon 
in a local, regional or global context. It is published in the context of the European Commission’s 
Amazonia+ Programme and the EU Forest Observatory on Deforestation and Forest Degradation, 
which was established at the end of 2023 and is managed by the Joint Research Centre. One of the 
aims of the Observatory is to support the implementation of the new Regulation (EU) 2023/1115 of 
the European Parliament and of the Council of the EU2 on the making available on the Union Market 
and on the export from the Union of certain commodities and products associated with 
deforestation and forest degradation. This Regulation aims to prevent that the Union’s consumption 
and production of commodities causes deforestation and forest degradation within or outside the 
EU. 

As in the previous reports of this series [1–3], a specific focus is given to Brazil (in particular in 
sections 3 and 5), the country in the region with the largest share of Amazon rainforest and the 
largest country of the South American Mercosur region.  

After the introduction (Section 1), Section 2 presents the JRC-TMF statistics updated up to year 
2023 for all countries of the Amazon region and the comparison with data from INPE’s 
Deforestation Monitoring Project (PRODES)3 for the Brazilian Amazon. Furthermore, the latest 
available statistics of the INPE-DETER4 alert system (January to October 2024), regarding 
deforestation and forest degradation in the Brazilian Amazon, are presented in Section 3, including 
a comparison with the statistics from the deforestation alert system SAD5, run by the Brazilian NGO 
Instituto do Homem e Meio Ambiente (IMAZON)6. 

Section 4 reports on the occurrence and dynamics of secondary forests in the Amazon region. How 
is secondary forest defined, where are forests regrowing and what were the causes of forest loss 
before its regrowth, what are the factors that obstruct or enable forest regrowth and what has 
shifting cultivation to do with it? Secondary forest data from JRC-TMF is compared with other 
available datasets regarding forest regrowth in the Amazon region. 

Section 5 deals with recent and new Brazilian environmental policies. What are the related actions 
that the Government has taken to the strengthening of institutions dealing with environmental 
protection and how does the conservative Congress act in the environmental policy context? 
Proposed laws (PLs) that have been introduced by the Congress (with a potential effect on the 
Amazon forest) are discussed in this chapter, as well as Government plans to develop the Brazilian 
Amazon region with controversial infrastructural projects that might have positive effects for the 
region’s economy, but at the same time might have negative consequences for the Amazon forest. 

Annex 1 describes the impacts of using the completely re-processed historical collection (Collection 
2) of satellite imagery of Landsat 4,5,7 and 8 and new Landsat 9 imagery for the whole period of 
1990-2023 on the JRC-TMF results, in comparison with the TMF statistics before the reprocessing 
(Collection 1). The improvement in number of ‘valid observations’ due to the addition of new 
(historical), reprocessed imagery into the USGS archive is discussed and its effect on this addition 
for the forest cover change statistics. 

Annex 2 reports new scientific findings that have been published between the second half of 2023 
and the first half of 2024, and which have not been cited in the main text. The findings deal with 
many aspects related to forest, deforestation, forest degradation and forest regrowth in the 
Amazon region.  

                                           
2 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32023R1115   
3 http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates 

4 http://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/legal/amazon/aggregated/ 

5 https://imazon.org.br/en/imprensa/understanding-the-imazon-monitoring-system/ 
6 https://imazon.org.br/en/ 
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1 Introduction 
 

The carbon uptake of intact tropical forests is not the solution to mitigate climate change, but is an 
important part of it [4,5]. Three measures to increase the carbon uptake of tropical forests are of 
importance, i.e. stopping further deforestation and forest degradation, preserving secondary forests 
and the re-establishments of forests on already deforested areas [4,6]. The preservation (and re-
establishment) of tropical forests are also an important way to mitigate the dramatic impact forest 
loss or degradation has on tropical floral and faunal biodiversity [7,8] and on people that live in and 
from the forest [9]. In general, the preservation and restoration of deforested tropical regions has 
multiple social and environmental benefits [10–12]. 

Climate change contributes to the increased frequency and intensity of wildfires globally, with 
significant impacts on society and the environment [13]. The hydrological cycle of the Amazon is 
changing, due to continuous deforestation and forest degradation (specifically due to forest fires), 
causing decreased precipitation, longer dry seasons, higher temperatures and droughts [14–16]. 
Negative synergies between deforestation, climate change, and widespread use of fire indicate a 
tipping point for the Amazon system to flip to non-forest ecosystems in eastern, southern and 
central Amazonia at 20-25% deforestation, according [17]. However, the authors propose to halt 
Amazon forest loss and degradation at less than 20% for the common-sense reason “that there is 
no point in discovering the precise tipping point by tipping it”. 

Around 16% of the Pan-Amazon’s original forest cover have been deforested by 2023 (according to 
JRC-TMF combined with data from Mazur et al. 2024 [18]), while between 17 and 38% are 
estimated to be degraded [19,20], mostly by illegal or unsustainable selective logging, fire, edge 
effects and drought-induced mortality [21]. While deforestation has decreased in 2023 in the 
Amazon region by almost 19% compared to year 2022 (see chapter 2), forest degradation has 
skyrocketed mostly due to forest fires. In the first 10 months of 2024 the area of forest fire alerts 
in the Brazilian Amazon has increased by more than 900% compared to the same period in 2023, 
according to the INPE-DETER alert system, and is by far the largest annual area of forest fire alerts 
since the beginning of the DETER program in 2016. Forest fires are in 2024 the most important 
cause for forest degradation in the Brazilian Amazon, covering more than 47,000 km2 in the first 
ten months of the year7. Even if Amazon forests are not adapted to fire, they have the ability to 
recover after burning [22,23]. However, the effect of severe or recurrent fires can be devastating for 
the forest, leading, in the extreme case, to a total loss of tree cover without a change of land use 
[21], i.e. to a conversion to grass- or shrublands. In addition, forest fires significantly affect air 
quality, posing health and environmental risks to the population [24–27], and can cause ruinous 
habitat loss for the region’s flora and fauna. 

As a means of mitigating the effects of deforestation and forest degradation, the interest in the 
concept of rewilding as a tool for nature conservation has been increasing in the past years. 
Rewilding exists on a continuum of scale, connectivity, and level of human influence and aims to 
restore ecosystem structure and functions to achieve a self-sustaining autonomous nature [28–30]. 
It encompasses a large number of terrestrial, freshwater and marine ecosystems8, like wetlands, 
boreal and tropical forests, grasslands, freshwater and coral reefs, to name a few. In the context of 
tropical forest restoration, secondary forests play a crucial role as a buffer for adjacent primary 
forests (mitigating edge effects), for carbon uptake [31–34], and for the recovery of  biodiversity 
[30,35–37]. In addition, secondary forests can create connectors for previously unconnected forest 
patches in fragmented forest landscapes. Soil, climate, topography, seed-dispersing fauna, former 
land use of the secondary forests patch, distance to and type of surrounding forests, adjacent land 

                                           
7 https://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/biomes/amazonia-nb/aggregated/ 
8 https://global-ecosystems.org/ 
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use intensity, assisted or unassisted natural forest regeneration (among others) are factors that 
determine the ‘success’ of forest restoration [33,38–43]. 

The magnitude of deforestation, forest degradation and forest restoration depend on the various 
national, regional and local political contexts in the Amazon. While deforestation alerts in the 
Brazilian Amazon have decreased in 2024, forest degradation has skyrocketed due to extensive 
forest fires9,10. The progressive environmental politics of the current Brazilian government are 
hampered by the conservative National Congress and recent municipality elections, when in the 
Amazon region a large number of agribusiness-related and climate denier candidates were 
selected11. However, the Brazilian President’s view on Amazon environmental protection is 
ambiguous. On one hand he supports the country’s forest monitoring and related law enforcements 
efforts, on the other hand he expressed support for major infrastructural operations, which are seen 
by many as environmentally problematic: the asphalting of the BR-319 [44] and possibly other 
roads, the Ferrogrão railway12, and oil and gas exploration in the Amazon region13. 

As mentioned before, the Amazon country’s forest cover change statistics are variable. The 
Colombian Amazon has shown the lowest figures of deforestation and forest degradation in 2023 
since 1995 according to TMF data, potentially due to the progressive environmental politics of the 
current government. Forest disturbances 2023 in the Guiana Shield countries (Guyana, Suriname 
and French Guiana) are at the highest levels since 1990, possibly due to an intensification of illegal 
selective logging and gold mining in the region (see [45])14 and due to a severe drought in the 
region. 

Currently, the Amazon region sees a significant increase of environmental and social violence 
[46,47]. The poverty rate is high, while public health care and opportunities for employment and 
income are scarce in the Brazilian Amazon [48], but the same is likely to be true for the whole 
region. Drug cultivation, trafficking and crimes that affect the environment are surging in large parts 
of the Amazon Basin due in part to an abundance of natural resources alongside a limited State 
presence, persistent corruption and structural factors related to informality, inequality and 
unemployment. Organized criminal networks in the region are not just exacerbating deforestation 
but are also accelerating convergent crime ranging from corruption, tax and financial crimes, to 
homicide, assault, sexual violence, exploitation of workers and minors, and the victimization of those 
defending the environment, including Indigenous Peoples15. However, illegal activity is not always 
directly connected to organised criminal groups. Often, illegal logging and mining are a result of the 
corrupt award of licences and permits by elected public officials and senior bureaucrats [49,50]. 

                                           
9 https://news.mongabay.com/2024/10/deforestation-remains-low-but-fires-surge-in-brazils-amazon-rainforest 
10 https://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/biomes/amazonia-nb/aggregated/ 
11https://news.mongabay.com/2024/10/amazon-voters-elect-environmental-offenders-and-climate-denialists-in-brazil/ 
12 https://www.nexojornal.com.br/externo/2024/10/22/mudancas-climaticas-estrada-floresta-impacto 
13 https://news.mongabay.com/2023/12/mega-oil-and-gas-auction-in-brazil-may-threaten-indigenous-lands/ 
14 https://learn.landcoalition.org/en/resources/saamaka-vs-suriname-case/ 
15 https://publicacoes.forumseguranca.org.br/items/c86febd3-e26f-487f-a561-623ac825863a 
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2 Deforestation and forest degradation in the Pan-Amazon 
between 1990 and 2023 - estimates from the JRC-TMF dataset 
We report here the trends in national deforestation and forest degradation rates for the six 
countries in the Pan-Amazon region (Brazil, Colombia, Venezuela, Peru, Bolivia and Ecuador) and the 
countries of the Guiana Shield (Guyana, Suriname and French Guiana) from year 2000 up to year 
2022. The two regions are defined by ‘Amazonia sensu stricto’ and ‘Guiana’, according to Eva and 
Huber (2005) [51] 16. 

 

Figure 1. Subset of JRC-TMF humid forest disturbance 
statistics for Peru for the past six years. The stars (2021-2023) 

indicate that the distribution of forest degradation and total 
deforestation within the yearly overall forest disturbances is an 

“educated guess” 

 

Source: JRC  

 

The JRC-TMF classification process 
starts out by mapping disturbances 
in the forest canopy, regardless of 
their permanence, from 1984 on-
wards on a yearly basis (Jan-Dec) 
with Landsat satellite imagery. The 
distinction between deforestation 
and forest degradation is made 
three years after the forest 
disturbance occurs by measuring 
the permanence of the disturbance 
over time. If the forest canopy is 
disturbed permanently, i.e. shows no 
signs of forest regrowth over the 
three years following the 
disturbance, the ‘forest disturbance’ 
pixel falls into the deforestation 
class. If a ‘forest disturbance’ pixel 
shows clear signs of forest regrowth 
within the three years following the 
disturbance, it is classified as forest 
degradation. 

As a consequence, the distribution 
of yearly deforestation and forest 
degradation areas within the 
detected yearly overall disturbed 
forest areas are consolidated until 
2020, but are estimated for the 
years 2021-2023 by applying a 10-
year average (2011-2020), 
indicated by stars in Figure 1. 

 

All statistics are based on the JRC-TMF dataset [52]17 18. Figures 12-18 report on forest cover 
changes of the moist forest in Amazon countries, thus the statistics do not include the changes in 
e.g. the seasonal or dry forests and savannas of Venezuela, Colombia, Peru and Ecuador, in the 
Brazilian Caatinga and Cerrado biomes and in the Bolivian Chaco. For comparison, the corresponding 
statistics of “tree cover loss” from the Global Forest Change (GFC)19 dataset are displayed in the 

                                           
16 https://forobs.jrc.ec.europa.eu/amazon 
17 https://forobs.jrc.ec.europa.eu/TMF/ 
18 https://forobs.jrc.ec.europa.eu/TMF/data#stats 
19 https://glad.earthengine.app/view/global-forest-change 
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mentioned figures as a grey dashed line. We extracted both JRC-TMF data and GFC data for the 
Pan-Amazon and the Brazilian Legal Amazon (BLA), based on the area definitions of Eva and Huber 
(2005) [51] and PRODES, respectively. For country statistics comparison, we extracted both JRC-TMF 
and GFC data based on the GAUL Level 0 country borders20 and the year 2000 JRC-TMF humid 
tropical forest extent as reference layer. For the three datasets JRC-TMF, PRODES and GFC data for 
the Brazilian Legal Amazon, the INPE-PRODES forest mask defining the humid forest within the BLA 
has been used additionally to ensure maximum comparability. 

 

2.1 Pan-Amazon 
 

Brazil drives the trend of forest cover change over the past 20 years in the Pan-Amazon, as it 
covers the largest part of the Amazon forest within the Pan-Amazon region and is the major 
contributor of deforestation and forest degradation area in the region. 

 

Figure 2. Forest disturbances in the Pan-Amazon humid forest from 1990-2023. The geographic basis are 
the areas of “Amazonia sensu stricto” and “Guiana”, according to Eva and Huber [51]. GFC statistics appear as 

grey dashed line. 

 

Source: JRC 

 

Altogether, 25,685 km2 of forest were either deforested or degraded in the Pan-Amazon in 2023, 
constituting a decrease of 18.8% with respect to 2022. In the past 34 years, the Pan-Amazon has 
lost 15.8% of its intact humid forest of 1990 (563.0 Mha), either by deforestation (11.0%, or 61.7 
Mha) or forest degradation (4.9%, or 27.5 Mha). 

The deforestation and forest degradation areas of the single countries do not add up to the Pan-
Amazon statistics, as for the country statistics also humid forest areas outside the Amazon region 
are considered by JRC-TMF data, as e.g. the Choco Forest on the Colombian Pacific coast or the 
Mata Atlântica in Brazil. 

                                           
 
20 https://developers.google.com/earth-engine/datasets/catalog/FAO_GAUL_2015_level0 
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Figure 3. Distribution of accumulated JRC-TMF forest disturbances during 2023, i.e. the sum of deforestation 
and forest degradation (above an area of 20 km2) within 50 km X 50 km grid cells in the Pan-Amazon humid 
forest (red circles). The Country borders are shown as black lines, major roads as grey lines. Background: TMF 

forest cover change map, status 2023. Image width ca. 3,500 km. 

 

 

Source: JRC 

 

For the countries other than Brazil, the forest disturbances mostly occur close to the borders of the 
Amazon biome, e.g. showing the deforestation hot spot at the Northern border of the Colombian 
Amazon and some forest cover change activities on the western Amazon borders in Peru and 
Ecuador (Figure 3). Specifically, in Brazil and Peru, new deforestation frontiers are created along 
the mayor highways cutting through the Amazon forest (e.g. the BR-319, BR-230, BR-163 and BR-
364 in Brazil, and the 30C in Peru), i.e. forest disturbances often occur along these transport 
corridors and along big rivers. In the Southern and Eastern Amazon multiple access routes to the 
forest exist, thus the forest disturbance areas are more widespread rather than being concentrated 
along single major roads. An exception in 2023 is the area of drought on the Rio Negro, which is not 
bound to road or river access. Examples of different types of Amazon forest disturbances in 2023 
are shown in Figure 4, Figure 5, Figure 6 and Figure 7.  
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Figure 4. (Figure 3 A) Examples of large-scale deforestation 2023 near the town of Cachoeira da Serra on 
the BR-163, Left: Sl-2 image from 2022, centre: S-2 image from late 2023, right: TMF mapping of 2023 

forest cover change. Image width: 35 km 

   

 

Figure 5. (Figure 3 B) Example of burned forest 2023 in Bolivia near the town of Yukumo, Left: Sl-2 image 
from 2022, centre: S-2 image from late 2023, right: TMF mapping of 2023 forest cover change. Image width: 

35 km 

   

 

Figure 6. (Figure 3 C) Example of extreme drought 2023 in the Brazilian Amazon, near the town of Barcelos 
on the Rio Negro, Left: Sl-2 image from 2022, centre: S-2 image from late 2023, right: TMF mapping of 2023 

forest cover change. Image width: 35 km 

   

 

Figure 7. (Figure 3 D) Example of small-scale deforestation 2023 in the Colombian Amazon, near the town of 
Calamar, Left: Sl-2 image from 2022, centre: S-2 image from late 2023, right: TMF mapping of 2023 forest 

cover change. Image width: 35 km 

   

Source Figures 4-7: USGS/JRC 
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The Amazon basin country statistics regarding the forest disturbance areas in 2021-2023 show 
that Brazil was highest in absolute values (according to the JRC-TMF data), which is not surprising, 
given the country’s large share of the Amazon forest and current forest disturbance dynamics 
(Figure 8). However, if the areas of forest disturbances are related to the country areas of 
remaining intact humid forest (Figure 9), Bolivia has the highest incidence by far in all three years, 
with a distance to the other countries that is specifically high in 2022 and 2023. At the same time, 
disturbances in the Guiana Shield are constantly rising, overtaking Peru and Colombia in 2023. The 
country statistics cover the countries’ rainforests, including humid forest outside the Amazon region. 

 

Figure 8. Disturbed humid forest area (deforestation and forest degradation) during years 2021, 2022 and 
2023 for Amazon countries, according to JRC-TMF data. 

 

Source: JRC 

 

Figure 9. Percentage of disturbed forest area (deforestation and forest degradation) during years 2021, 
2022 and 2023 in relation to remaining intact moist forests for Amazon countries, according to JRC-TMF data. 

 

 

Source: JRC 
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Figure 10. Area of undisturbed moist forest 2023 in the Amazon countries and regions (Guiana Shield, Pan-
Amazon) and the percentage of forest loss from 1990-2023. The circle size is proportional to the countries’ 

area of undisturbed forest 2023. 

 

Source: JRC 

Bolivia shows with 34.7% by far the highest percentage of intact humid forest loss in the past 34 
years, followed by Ecuador (22.9%) and Brazil (22.3%). The smallest percentages are found in the 
Guiana Shield countries (4.4%) and Peru (10%) (Figure 10). The whole Pan-Amazon region shows a 
15.8% loss of intact humid tropical forest. Overall, Bolivia and Ecuador have the highest loss of 
intact forest over 34 years of mapping. The Guiana Shield countries, Ecuador and Peru have the 
highest average percentage of forest degradation on a year-by-year basis from 1990-2023 (Figure 
11). 

Figure 11. Overall percentage of intact forest loss 1990-2023, with average yearly forest loss class for 
Amazon countries and regions due to deforestation and forest degradation. 

 

Source: JRC 
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2.2 Bolivia 
 

Figure 12. Forest disturbances in the Bolivian humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

The forest disturbances for Bolivian humid forests in the last 34 years show the highest peaks in 
years of severe forest fires, as for the years 1999 and 2010 [53,54]. In 2023, altogether 5,097 km2 
of humid forest were either deforested or degraded, which constitutes an increase of 2.1% 
compared to 2022.  

In the past 34 years Bolivia has lost 34.7% of its intact humid forest in 1990 (328,056 km2), either 
by deforestation (19.4%, or 63,736 km2) or forest degradation (15.3%, or 50,048 km2).  
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2.3 Brazil 
 

Figure 13. Forest disturbances in the Brazilian humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

The Amazon being the Brazilian region undergoing most changes in humid forest cover, its forest 
dynamics clearly drive the overall Brazilian humid forest cover change statistics reported by JRC-TMF 
data. The decrease of the Amazon deforestation after 2004 and the peaks in forest degradation, 
mostly due to forest fires of 1999, 2010 and 2015-2017, are visible in the Brazilian Legal Amazon 
and the Brazilian statistics from JRC-TMF.  

According to JRC-TMF statistics, 18,701 km2 of forest were either deforested or degraded in 2023 in 
the Brazilian humid forest (i.e. Amazon and Atlantic forests), constituting a decrease of 23.5% 
compared to 2022. In the past 34 years Brazil has lost 22.3% of its intact humid forest in 1990 
(3,816,270 km2), either by deforestation (16.8%, or 642,683 km2) or forest degradation (5.4%, or 
207,330 km2). 
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2.4 Colombia 
 

Figure 14. Forest disturbances in Colombian humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

The Colombian humid forest disturbance area of 2023 is 1,927 km2, which constitutes a decrease 
of 32% in comparison with 2022. The overall forest disturbance area 2023 is the lowest since 
1996. In the past 34 years, Colombia has lost 17% of its intact humid forest in 1990 (681,183 
km2), either by deforestation (10.4%, or 70,675 km2) or forest degradation (6.6%, or 45,110 km2). 
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2.5 Ecuador 
 

Figure 15. Forest disturbances in Ecuadorian humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

The Ecuadorian humid forest disturbance area in 2023 decreased by 33.1% compared to the 
previous year. Altogether 581 km2 of forest have been either deforested or degraded. In the past 34 
years Ecuador has lost 22.9% of its intact humid forest in 1990 (149,534 km2), either by 
deforestation (10.3%, or 15,361 km2) or forest degradation (12.6%, or 188,649 km2). 
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2.6 Guiana Shield (Guyana, Suriname and French Guiana) 
 

Figure 16. Forest disturbances in the Guiana Shield’s humid forest from 1990 to 2023, according to JRC-
TMF. Tree cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

In 2023, forest disturbances in the Guiana Shield (Guyana, Suriname and French Guiana) show an 
increase of 89.6%, compared to 2023, adding up to 1,388 km2. In the past 34 years the Guiana 
Shield countries have lost 4.4% of their intact humid forest in 1990 (403,527 km2), either by 
deforestation (1.7%, or 6,695 km2) or forest degradation (2.7%, or 11,015 km2). This substantial 
increase of forest disturbances in 2024, particularly in Guyana (+133%) and Suriname (+73%), may 
be partially attributed to illegal logging and mining activities in Indigenous territories21. The relative 
increase of forest disturbances in the past two years is the highest of all Amazon countries or 
regions. 

  

                                           
21 https://learn.landcoalition.org/en/resources/saamaka-vs-suriname-case/ 
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2.7 Peru 
 

Figure 17. Forest disturbances in Peruvian humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

The decrease of the 2023 forest disturbance area, compared to 2022, is 16.9% (1,857 km2 in 2023 
vs. 2,233 km2 in 2022). In the past 34 years Peru has lost nearly 10% of its intact humid forest in 
1990 (726,587 km2), either by deforestation (4.8%, or 34,849 km2) or forest degradation (5.2%, or 
37,810 km2). 
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2.8 Venezuela 
 

Figure 18. Forest disturbances in Venezuelan humid forest from 1990 to 2023, according to JRC-TMF. Tree 
cover loss estimates from GFC appear as grey dashed line. 

 

Source: JRC 

 

Venezuela showed an increase of forest disturbance areas in 2023 on a relatively low level, 
compared to the other Amazon countries (see also Figure 9), with 901 km2 of humid forest having 
been either deforested or degraded. Compared to 2022, forest disturbances increased by 49.4% in 
2023. In the past 34 years, Venezuela has lost 15% of its intact humid forest in 1990 (441,151 
km2), either by deforestation (8.6%, or 38,133 km2) or forest degradation (6.4% or 28,039 km2). 
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2.9 Comparison of JRC-TMF and INPE-PRODES deforestation estimates 
for the Brazilian Legal Amazon 
 

The overall annual new disturbed forest area in the BLA decreased by 25.5% from 22,074 km2 in 

2022 to 16,455 km2 in 2023.  

As mentioned before, the distinction between forest degradation and deforestation events for 2023 
can only be done three years from now, once a potential forest regrowth can be assessed and 
confirmed from satellite imagery. At the beginning of 2024, the consolidated attribution of the two 
classes was made for year 2020 for the first time.  The relative class distribution within the overall 
disturbed forest areas for years 2021 to 2023 (red, pink and orange bars in figure 19) is based on a 
10-year historical average. 

 

Figure 19. Annual deforestation and forest degradation in the BLA from 1990 to 2023, according to JRC-TMF 
data. Direct deforestation appears in red, deforestation after degradation in pink, while forest degradation 

appears in orange. For comparison, INPE-PRODES and GFC deforestation estimates appear as blue and grey 
dashed lines, respectively. 

 

Source: JRC 

 

In the past 34 years the Brazilian Legal Amazon has lost 19.5% (or 68.5 Mha) of its intact humid 
forest of 1990 (351.3 Mha), either by deforestation (14.9%, or 52.2 Mha) or forest degradation 
(4.6%, or 16.3 Mha). The numbers given here are not directly related to the bars in Figure 19, as 
many areas of forest degradation (yellow bars) in early years have been deforested at a later stage. 

The current JRC-TMF report’s estimates of deforestation and forest degradation in the Amazon 
region from 1990-2023 are different to a certain extent, compared e.g. to last year’s estimates [3]. 
This is due to the complete reprocessing of the USGS’ Landsat archive [55], i.e. different satellite 
imagery inserted into the JRC-TMF processing chain results in different forest cover change 
statistics. More information on this topic is found in Annex 1. 
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3 Monitoring deforestation and forest degradation in the Brazilian 
Legal Amazon: estimates from PRODES and DETER for 2023(/24) 

3.1 INPE-PRODES 
The PRODES consolidated statistics on the deforestation of humid forest in the Brazilian Legal 
Amazon (BLA) showed 6,288 km2 for the period of August 2023 until July 2024 22, which 
constitutes a decrease of 30.6%% in comparison with the corresponding period in 2022/23 (Figure 
20). For the Cerrado biome, which partly lies in the Brazilian Legal Amazon, the deforestation area 
given by INPE for the same period was 8,174 km2, a decrease of 25.8% compared to 2022/23 23 
(Figure 21). 

 

Figure 20. Yearly consolidated deforestation estimates for the Brazilian Legal Amazon reported by INPE-
PRODES. 

 

Figure 21. Yearly consolidated deforestation estimates for the Brazilian Cerrado biome reported by INPE-
PRODES. 

 

Figures 20 and 21: Source: INPE 

                                           
22http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates 
23http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/cerrado/increments 
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3.2 INPE-DETER deforestation and forest degradation alerts 

3.2.1 INPE-DETER deforestation alerts 2023(/24) 
 
The INPE-DETER near real-time deforestation detection system produces deforestation alerts (for 
the Brazilian Amazon and Cerrado biomes separately) and forest degradation alerts (Amazon biome 
only), based on daily low-resolution satellite imagery. The system gives first trends about decrease 
or increase of monthly forest cover change in the two regions and provides substantial input to the 
Brazilian Institute of Environment and Renewable Natural Resources (IBAMA), responsible for the 
surveillance and control of deforestation in the Amazon [56]. 

The trend derived from the monthly INPE-DETER deforestation alerts over annual periods are 
usually consistent (increase or decrease) with the trend reported through the official consolidated 
annual deforestation figures for the BLA from INPE-PRODES. The comparison between 12 months 
of DETER accumulated monthly near-real-time alerts (August-July period) and official PRODES 
deforestation statistics from 2015/2016 to 2023/2024 periods shows significant differences but 
with an overall consistent trend (Figure 22). The yearly aggregated DETER deforestation alert areas 
(Aug-Jul period) represent 68.7% of the PRODES estimate for the corresponding period in 
2023/2024. This is a middle-range percentage (the lowest being 60.7% in 2017/18, the highest 
88.3% in 2022/2023) with an 8-year-average of 71.8%. For the Cerrado biome, the DETER 
deforestation alerts capture in average (over a 7-year period) 65.7% of the PRODES deforestation 
estimates.  

In 2024 (“calendar year”, i.e. Jan-Dec) INPE-DETER deforestation alerts for the Brazilian Legal 
Amazon24 recorded an area of 4,321 km2, which constitutes a decrease of 45.7% compared to 
2023. If the PRODES “reference yearly period” (Aug-Jul) is taken into account, the estimates show a 
decrease from August 2022 – July 2023 of 7.4%, compared to the previous reference year period 
(Figure 22, Figure 23). 

Figure 22. INPE-DETER yearly aggregation of deforestation near-real-time alerts (blue bars) and INPE-
PRODES official consolidated deforestation estimates (red bars) from 2015/16 – 2023/24 (August-July) for 

the BLA  

 

Source: INPE/JRC 

                                           
24 http://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/legal/amazon/aggregated/ 
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Figure 23. Difference between ‘reference year’ (August-July) and ‘calendar year’ (January-December) 
accumulation of INPE-DETER monthly deforestation alerts. 

 

Source: INPE/JRC 

 

Figure 24. Monthly statistics of INPE-DETER 
deforestation alerts 2015-2024 for the BLA 

(January – October) 

 

 

 

 

In the first ten months of 2024, the alert areas 
of deforestation in the Brazilian Legal Amazon 
decreased by 17.8% in the first ten months, 
compared to the same period in 2023 (4,778 
km2 in 2023 vs. 3,926 km2 in 2024), according 
to INPE-DETER. The effects of a more 
progressive Brazilian environmental policy and 
the strengthening of institutions dealing with 
environmental protection (INPE, IBAMA, ICMBio) 
can be observed when comparing the years of 
2023 and 2024 with the four precedent years. 

 

Source: INPE  

 

For the Cerrado biome, a decrease of 24.5% in deforestation alert area is recorded by INPE-DETER 
for the first ten months of 2024, compared to the same period in the previous year. 
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3.2.2 INPE-DETER deforestation alerts vs. IMAZON-SAD deforestation alerts 2023 
and first ten months of 2024 
 

While INPE is a governmental agency, IMAZON, as a non-governmental organisation, tracks 
deforestation independently of the Brazilian Government. Their deforestation tracking systems have 
a similar scope and area of interest, but use different data and image analyses techniques. INPE 
uses optical imagery with a spatial resolution of 64 m from the WFI sensor on board of the CBERS-
4A satellite with a 3-day repetition rate25 to detect newly deforested areas in near-real time. 
IMAZON uses different optical and radar satellite data (Landsat 8, Sentinel-1 and Sentinel-2)26. Both 
systems report deforestation alerts on a monthly basis, while DETER has the mandate to provide 
deforestation detections on a daily basis to law enforcement entities like IBAMA or ICMBio. In 2023, 
DETER reports 27.9% more than SAD (5154 km2 vs. 4030 km2), while both systems show a clear 
overall decrease of deforestation alert areas. While DETER reports a decrease of 49.9% for 2023 
(10278 km2 reported in 2022), SAD numbers of 2023 decrease by 61.9% (10573 km2 reported in 
2022) (Figure 25). 

 

Figure 25. Monthly deforestation alerts from January – December 2022 and 2023 (left), according to INPE-
DETER and IMAZON-SAD, with accumulated monthly deforestation alerts of both systems (right) 

  

Source: INPE/IMAZON/JRC 

 
Both systems report a decrease in deforestation alerts for the first 10 months of 2024, compared 
to the same period in 2023 (Figure 26), with 17.8% for DETER and 8.3% for SAD. DETER reports 
accumulated 3,926 km2 of deforestation alerts, while SAD reports 3,409 km2. 
 
 
 
 
 
 
 
 
 
 

                                           
25 www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes/pdfs/Metodologia_Prodes_Deter_revisada.pdf 
26 https://imazon.org.br/publicacoes/faq-sad/ 
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Figure 26. Monthly deforestation alerts (left) from the period January – October for year 2023 and 2024, 
according to INPE-DETER and IMAZON-SAD, and monthly accumulated monthly deforestation alerts of both 

systems (right). 
 

 

Source: INPE/IMAZON/JRC 
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3.3 INPE-DETER forest degradation alerts 

3.3.1 INPE-DETER forest degradation alerts 2023 

 

The INPE-DETER alerts on forest degradation areas comprise the classes ‘selective logging’, ‘forest 
fires’ and ‘unspecified forest degradation’. The statistics for 2023 show a decrease of overall BLA 
forest degradation of 13.0% (Figure 27). The driver of this reduction is the decrease of forest fires 
by 31.3% between 2022 and 2023 (Jan-Dec)27, while both selective logging and “unspecified 
degradation” alerts increased in 2023 (21.2% and 27.4%, respectively). 

 

Figure 27. left: INPE-DETER forest degradation alerts for the BLA 2016-2023, right: INPE-DETER forest fire 
alerts 2016-2023 for the BLA (forest fire being a sub-class of the forest degradation alerts). 

  

Source: INPE 

 

3.3.2 INPE-DETER forest degradation alerts 2024 
 

In the first ten months of 2024, the areas of deforestation in the Brazilian Legal Amazon decreased 
by 17.8% compared to the same period in 2023 (4,778 km2 in 2023 vs. 3,926 km2 in 2024), while 
the area of forest degradation increased by 375.7% (11,299 km2 in 2023 vs. 53,748 km2 in 2024), 
according to the INPE-DETER alert system. In this context, it is important to note that monthly alert 
estimates have a high uncertainty in particular due to persisting cloud cover that can limit the 
detection of forest cover changes during specific months (rainy season) and attribute such changes 
later during following drier months. In consequence, comparing monthly figures has limited 
meaningfulness, while observing trends in accumulated figures over yearly periods gives more 
robust estimates. 

Specifically in the months of September and October, DETER measured forest degradation alerts (in 
purple) that were unprecedented since 2016. Forest degradation alerts add up different causes of 
degradation, from different types of selective logging, fire and ‘unspecified forest degradation’.  

 

 

 

                                           
27 http://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/legal/amazon/aggregated/ 
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Figure 28. left: INPE-DETER accumulated forest fire alerts 2016-2024 for the BLA (Jan – Oct)28, right: INPE-
DETER accumulated alerts of selective logging and ‘unspecified forest degradation’ 2016-2024 for the BLA. 

 

 

Source: INPE 

 

When differentiating the Amazon accumulated monthly degradation alerts for specific degradation 
causes, it becomes clear that forest fires are the main cause for the sharp increase in the first ten 
months of 2024. Forest fire alerts increase by 928% compared to 2023, while the other causes of 
forest degradation (selective logging and ‘unspecified forest degradation’) roughly stay on the same 
level over the years (decrease of 8.9% between 2023 and 2024). The huge increase of fires in the 
region is confirmed by GWIS29 that maps burned areas globally, for the Brazilian Amazon as well as 
for South America the red line representing 2024, burned areas are way above the maximum from 
2012-2023. 

 

Figure 29. GWIS burned areas, left: for the Brazilian Legal Amazon, right for South America.  

 

Source: JRC 

 

                                           
28 http://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/legal/amazon/aggregated/ 
29 https://gwis.jrc.ec.europa.eu/apps/gwis.statistics/seasonaltrend 
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4 Secondary forests in the Amazon 

4.1 Introduction 
Secondary forests are new forests that grow in places where the original forest had been removed, 
often due to the expansion of pastures or crop fields [57,58]. In many tropical countries, including 
parts of the Amazon, these secondary forests are becoming more common as they reclaim areas 
that were once deforested [59]. 

Secondary forests have a lot of potential to help mitigating climate change by capturing carbon 
dioxide (CO2) from the atmosphere [60–62]. They also play a crucial role in supporting wildlife, 
improving water regulation, and protecting soil [63]. While secondary forests are incredibly valuable, 
within policy relevant timeframes they can never fully replace the original, primary forests [64,65] 
in terms of their biodiversity, structure and composition. 

 
Figure 30. Transition from primary to secondary forest as observed by Landsat satellites. From left to right, 
above: primary forest, deforestation, usage as cattle pasture, below: signs of pasture abandonment, young 
secondary forest, consolidated secondary forest. The acquisition year is indicated at the top-right of each 

panel. Image width ~6 km, at 58.22°W 10.92°S. 

   

   

 
Source: USGS 
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Secondary forests are also important for preserving and restoring tropical ecosystems. They help 
buffer the negative effects of forest disturbance along old-growth forest edges and can act as 
natural corridors that connect different patches of forest [66,67]. Connectivity is vital for 
maintaining and rebuilding biodiversity and ecosystem health. 

Secondary forest can be detected on satellite imagery only by taking into account the history of the 
forest through time series analysis (Figure 30), where a primary forest is deforested (1985), and 
converted to another land use (2004), which after some time is subsequently abandoned, allowing 
the regrowth of vegetation that with time will evolve into a (secondary) forest. 

In this chapter, we will cover i) an overview of secondary tropical forests, including how quickly they 
grow and build up biomass; ii) the relationship between traditional farming practices and the 
development of secondary forests; iii) where secondary forests are found, how they change over 
time, and their extent; iv) how secondary forests are represented in JRC’s Tropical Moist Forest 
(TMF) dataset. 

 

4.2 The Amazon basin, secondary forests, and how fast they grow 
The Amazon Basin is a massive region, covering about 7 million km2 across South America [68]. It 
spans several countries: Brazil (58%), Peru (13%), Bolivia (8%), Colombia (7%), Venezuela (6%), 
Guyana (3%), Suriname (3%), French Guiana (1%), and Ecuador (1%). While the Food and 
Agriculture Organization (FAO) has a single definition of forest, namely any area over 0.5 hectares 
with at least 10% tree canopy cover and trees taller than 5 meters. However, forests are much 
more complex. Within a forest there are numerous structural and compositional changes that occur 
in space and time, leading to a dynamic forested landscape [69]. The authors describe old-growth 
forests as those with large trees, multiple layers of canopy, and diverse species. Meanwhile, 
secondary forests show rapid structural change but initially have low compositional change (Figure 
31). 

Figure 31. Changes in ecosystem states from tropical old-growth forests. This diagram shows the main ways 
that tropical old-growth forests can change over time. It highlights key drivers of these changes but does not 
include every possible transition. For simplicity, it omits the back transitions that might occur due to natural 

regrowth, afforestation, reforestation, forest management, and other restoration efforts.  

 

Source: JRC, adapted from Putz and Redford (2010) [69]. 
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Managed vs. degraded forests 

Managed forests30 are carefully tended for timber or other resources, leading to lower densities of 
valuable species and higher densities of plants that need more light. These forests are managed to 
be sustainable, though this depends heavily on the practices used. Unlike plantations, managed 
forests regenerate naturally. On the other hand, degraded forests suffer from uncontrolled or 
unsustainable pressures like excessive harvesting, conversion to other land uses, or fires. 
Degradation can range from minor damage to total conversion into non-forest areas. The line 
between managed and degraded forests can be blurry. Timber logging that does not follow 
sustainable practices often leads to irreversible damage, making it difficult to distinguish between 
managed and degraded forests. 

 

Secondary forests and their growth 

Secondary forests grow in areas that were completely deforested, often for cropland or pastureland. 
Traditional farming methods like shifting cultivation (where land is cleared with fire and used for 3-
10 years before being left fallow) or low-vegetation cultures (such as grasslands or pastures) can 
be maintained for years before abandonment. Regrowth typically involves local species and follows 
a process of natural succession, which depends on factors like the period of active land use, 
proximity to seed sources, size of the regenerating area, and soil conditions. These lands can 
sometimes be converted into industrial agriculture or plantations, which use soil fertilizers and pest 
management, significantly altering nutrient cycles, especially for nitrogen and phosphorus. 

 

The rate of secondary forest growth 

Research shows that secondary forests in tropical regions can grow relatively quickly. Across the 
tropical moist biome in South America, aboveground carbon accumulation rates range from 1.5 to 
4.5 tons of carbon per hectare per year in the first 30 years of regrowth [61]. This is about 11 times 
faster than old-growth/primary forests in quasi-equilibrium [70]. Brown and Lugo (1990) [71] found 
that it takes forests 60-80 years to reach a state of equilibrium. Generally, there is high variability 
of forest biomass regrowth rates reflecting a mixture of abiotic and biotic factors as well as human 
decision to let the forests grow. 

Secondary forest growth rates depend on several factors, including climate, soil fertility, prior land 
use, and distance from remaining mature forests [59,72]. Carreiras et al. (2017) [73] conducted a 
comprehensive analysis of aboveground biomass productivity in secondary forests. The median 
growth rate for secondary forests older than 20 years is circa 2.5 tons of carbon per hectare per 
year. In younger forests, growth rates can vary widely, reflecting greater dependence on initial 
conditions. Overall, the average growth rate in secondary forests is about 3 tons of carbon per 
hectare per year. In the Eastern Amazon, Lennox et al. (2018) [65] noted that biomass in these 
forests recovers at a rate of 2.25 tons per hectare per year, whereas species richness and 
composition recover at annual rates of 2.6% and 2.3%, respectively. In contrast, other studies, such 
as those by Uhl et al. (1982) [74] and Saldarriaga et al. (1988) [75], observed that biomass 
accumulation in western Venezuela continues even after 150 years post-abandonment. While much 
of the aboveground biomass recovers within 100 years, complete recovery can be slower due to the 
slow growth of dominant canopy species. This highlights the need to consider dynamics beyond 80 
years in tropical forest recovery (Robinson et al., in review31). 

                                           
30 Here we are not referring to IPCC Good Practice Guidance definition of managed forest, but rather the active management 
of forest for resources 
31 https://www.researchsquare.com/article/rs-4659226/v1 
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4.3 Shifting cultivation in the Amazon and its connection to secondary forests  

Shifting cultivation is an age-old farming practice that has supported millions of people in 
developing countries [76]. This method typically starts with clearing wooded areas, such as forests 
or savannas. Farmers then grow crops for a period, followed by a rest or "fallow" period during 
which the land is left to recover. Depending on how long the land is left to rest, it can eventually 
regrow into a secondary forest. 

 

Global Estimates and Patterns 

Two major studies have estimated the extent of shifting cultivation around the world. Silva et al. 
(2011) [77] used the Global Land Cover 2000 dataset to estimate that, in 2000, around 258 million 
hectares were used for shifting cultivation. Of this, 43% was in Central and South America, 29% in 
Africa, and the rest in Asia. Another study by Heinimann et al. (2017) [78] used satellite data from 
2000 to 2014 to detect shifting cultivation patterns. They estimated that by around 2010, about 
280 million hectares were used for this practice globally, with 41% in Central and South America, 
37% in Africa, and the remainder in Asia. While both estimates are similar, Silva et al. (2011) [77] 
noted that land cover maps might not fully capture land use practices, a point further emphasized 
by Heinimann et al. (2017) [78]. 

 

Ecological benefits and challenges of shifting cultivation 

The ecological benefits of secondary forests that arise from shifting cultivation, such as carbon 
storage and biodiversity recovery, are still not fully understood [79]. Mertz et al. (2021) [79] 
conducted a review of studies comparing the benefits of secondary forests with other types of land 
use in shifting cultivation areas. They found that while old-growth forests generally support more 
biodiversity and store more carbon, secondary forests still provide significant benefits, especially 
when compared to areas with perennial crops. Furthermore, the authors observed that secondary 
forests tend to accumulate carbon over time, but old-growth forests usually have higher carbon 
stocks. Comparisons between secondary forests and perennial plantations showed mixed results, 
with no clear pattern. However, secondary forests typically have soil carbon levels equal to or higher 
than perennial plantations, while areas used for annual crops or pasture generally have lower 
carbon stocks [79]. In two-thirds of comparisons, secondary forests had higher soil carbon than 
areas used for annual crops or pasture, though one-third showed no difference. 

 

Shifting cultivation in the Amazon basin 

Approximately 111 million hectares in Central and South America were used for shifting cultivation 
in 2000, with most of this area (64%) in Brazil [77]. Colombia follows with 16%, and Venezuela, 
Ecuador, and Peru each have about 5% or less. The length of cropping and fallow periods varies 
widely across the Amazon Basin. Crop cycles can last from just one year to eight years, while fallow 
periods can extend up to 20 years. Longer fallow periods allow the land to regrow and often achieve 
forest cover. The growth rates and species composition of this regrowth depend on factors such as 
previous land use, soil quality, and climate [80]. 

 

4.4 The extent, location and dynamics of secondary forests  
Early research tracking secondary forests 

Understanding where secondary forests are located and how they change over time in the Amazon 
basin has been a major focus for researchers since the early 1990s. Most studies have 
concentrated on the Brazilian Legal Amazon (BLA). In the 1990s and early 2000s, scientists used 



37 

remote sensing technology with relatively coarse resolution to map these forests. For example, 
Lucas et al. (2000) [81] used data from 1-km NOAA AVHRR satellites to map secondary forests 
across the BLA. They estimated that about 160,000 km2 of secondary forests were present, mostly 
in north-eastern Brazil and along major highways like the Trans Amazonian Highway. Large areas of 
secondary forest were also observed near regional centres like Manaus and Santarém. In contrast, 
regions such as Rondônia and Acre had less regeneration, with younger secondary forests being 
more common there. Carreiras et al. (2006) [82] used 1-km SPOT-4 VEGETATION images to map 
around 140,000 km2of secondary forests in the BLA, showing concentrations in the Brazilian States 
of Pará, Amazonas, Mato Grosso, and Maranhão. 

 

Recent advances in monitoring 

In the early 2010s, advancements in geospatial technology, particularly the Earth Engine platform 
by Google, revolutionized land cover assessments. Silva Junior et al. (2020)[83] in the scope of the 
MapBiomas project (https://mapbiomas.org) mapped ~150,000 km2of secondary forests in the 
Brazilian Amazon biome in 2018 using as basis a time-series of land cover maps obtained from 
classification of annual high-resolution 30-m Landsat data between 1985 and 2018. However, no 
formal accuracy assessment of the secondary forests class is provided, only the overall and class-
specific accuracies (omission and commission errors) of the original land cover maps. 

Wang et al. (2020) [84] used a time-series of land cover maps of the Brazilian Amazon in the period 
2000-2014 (TerraClass) [85] to assess the spatial distribution and dynamics of secondary forests. 
Wang et al. (2020) [84] identified two phases of secondary forest loss: i) from 2000 to 2008, 
secondary forest loss declined significantly, paralleling the reduction in primary forest loss; however, 
ii) between 2008 and 2014, secondary forest loss surged from approximately 6,000 km2 to 
~10,000 km2 per year, despite primary forest loss stabilizing. This last period saw increased 
pressure on forest ecosystems, primarily affecting secondary forests. Consequently, total forest loss 
(primary and secondary) rose by more than 100% from 2008–2010 to 2012–2014, reversing the 
previous downward trend. The share of total forest loss due to secondary forest clearance grew 
from 37% in 2000–2004 to 72% in 2012–2014. The widespread preferential cutting of secondary 
forests was evident. From 2000 to 2004, secondary forest loss primarily surpassed primary forest 
loss in the far northeast of the Brazilian Amazon, an area with historically high primary 
deforestation and limited remaining primary forest. By 2012-2014, secondary forest loss had 
outpaced primary forest loss across nearly the entire Brazilian Amazon. In terms of the extent of 
secondary forest in the Amazon, Wang et al. (2020) [84] estimated ~200,000 km2 in 2000, 
~220,000 km2 in 2004, ~211,000 km2 in 2008, ~234,000 km2 in 2010 and ~233,000 km2 in 2012. 

Nunes et al. (2020) [86] conducted a similar assessment to that in Silva Junior et al. (2020) [83], 
examining its extent, age, and dynamics, including annual changes in forest cover and carbon 
stocks. Net gains and losses of secondary forests were determined using the FloreSer monitoring 
system, which utilized MapBiomas Collection 3.1 land cover data at 30 m resolution from 1985 to 
2017 [83]. In 2017, patches of secondary forests were found along the arc of deforestation, the 
trans-Amazon highway, and main river corridors in the Brazilian Amazon, with higher concentrations 
in older areas like eastern Pará state. Various factors, such as abandonment or rotational 
management of pastures and agricultural fields, influence the distribution and size of secondary 
vegetation. Forest restoration and plantations also contribute to these estimates. However, Nunes et 
al. (2020) [86] did not distinguish between forest plantations and natural regeneration, and the 
‘planted forest’ class mapped by MapBiomas (865 km2) was excluded from the analysis, reducing 
the impact of monocultures on the results. From 1985 to 2017, the extent of secondary forests in 
the Brazilian Amazon increased, reaching over 120,000 km2 in 2017. The net increase was 
consistent each year, except for 1999-2000. The time series shows three distinct periods: rapid 
growth from 1986 to 1993, stabilization from 1994 to 2002, and accelerated expansion from 2003 
onwards, likely due to surplus pasturelands from high deforestation rates between 2000 and 2004. 
By 2001, about 50% of secondary forests were 5 years old or younger, and by 2017, 65% were 10 
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years old or younger, with only 13% being older than 20 years. The study found uncertainty in the 
development of early-regenerating secondary forests into older forests, with 35% of young 
secondary forests potentially being fallow fields – secondary forests older than 5 years are more 
likely to indicate stable regeneration. 

 

Collaborative efforts 

The 2ndFOR network32, involving researchers from 25 countries, is one of the key collaborations 
studying secondary forests. Rozendaal et al. (2019) [87] found that while secondary forests quickly 
regain species richness, they take much longer to recover their full species composition. It takes 
about 50 years for secondary forests to reach 80% of the species richness found in old-growth 
forests, but centuries for full recovery. Chazdon et al. (2016) [60] modelled the carbon storage 
potential of secondary forests in Latin America, estimating that in 2008, these forests covered 2.4 
million km2 and could accumulate 8.48 billion tons of carbon over 40 years. They also projected that 
if 40% of degraded pastures were allowed to regenerate naturally, an additional 2.0 billion tons of 
carbon could be sequestered. 

 

Promoting natural regeneration 

To help secondary forests thrive, several strategies can be employed: 

1. Protection from further degradation: Preventing additional damage by controlling activities like 
logging and fire helps natural regeneration processes [88]. In the Brazilian Amazon, secondary 
forests have no protective status until they are at least 20 years old, and this protective status is 
only in some states, e.g., Pará. 

2. Assisted natural regeneration: Actively managing the land by removing invasive grass species 
[89] and lianas [90] and protecting young trees from grazing animals can support regrowth [66]. 
Tropical forests forest regeneration can be un-assisted, i.e. through natural regrowth [91], or 
through assisted forest recovery, i.e. by active seeding or seedlings planting [10,41,92]. However, 
areas of assisted forest restoration are still very limited. 

3. Community involvement: Engaging local communities in conservation efforts ensures sustainable 
management and protection of these areas. Local knowledge and practices play a crucial role in 
promoting natural regeneration [93,94]. 

 

4.5 Secondary forests in the JRC-TMF dataset 
Definition and spatial distribution 

Secondary forests in the JRC-TMF dataset (termed forest regrowth) are mapped by looking at the 
transition between land cover classes. Any given pixel is classified as forest regrowth only if two 
conditions are met: i) deforestation signal must be a long-duration disturbance, i.e., detection of the 
absence of tree cover for more than 900 days, or, alternatively, at least four short duration 
disturbance events (less than 365 days) must be observed, and ii) regrowth must be observed for at 
least 3 years. For this chapter, we required a minimum of 5 years of consecutive classification as 
deforested land before considering the area as forest regrowth. The disturbance signal is evidence 
of an alternative land use (pastureland or cropland) during the period between primary and 
secondary forests. 

According to the JRC-TMF dataset, there were 4.9 million km2 of undisturbed forests, 0.38 million 
km2 of degraded forests and 0.08 million km2 of forest regrowth in the Amazon basin in 2023. 

                                           
32 https://sites.google.com/view/2ndfor 
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Regenerating forests after forest disturbances (degradation or deforestation) represent therefore 
0.46 million km2 or 8.6% of total forest area (regenerating and undisturbed). Figure 32 depicts the 
spatial distribution of the 0.08 million km2 of secondary forests sensu lato in the Amazon region in 
2023. Regions where the area of secondary forests sensu lato are greater than 200 km² per 0.5° 
grid cell include NE and SE Pará, Roraima (all in Brazil), significant areas in Eastern Venezuela, 
Colombia, Peru, and Bolivia. In Brazil, there are also significant areas mapped as secondary forests 
sensu lato along the Amazon river East of the Tapajós river. 

Figure 32. The spatial distribution of secondary forests sensu lato in the Amazon basin in 2023. Country 
boundaries are delimited by black lines. The background dataset refers to the JRC-TMF Transition map, where 

is mostly visible the extent of undisturbed tropical moist forest (in green). 

 

Source: JRC 

 

According to the TMF-secondary forest dataset, the dominant age class is < 10 years, with 75% of 
mapped secondary forest below this age (Figure 33). Only 6% of the secondary forests are 
between 20-34 years old. Information on age dynamics is extremely useful to prioritize areas that 
should be put under protection status. Assuming a constant biomass growth rate of 6 tons per 
hectare per year, the biomass stock in the 3-10 year age class is only 1.8 times that in the 10-20 
year age class, even though the area covered by the latter is 4.2 times larger than that covered by 
the former. 
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Figure 33. The fate of forest regrowth sensu lato in 2023. Area of forest regrowth (in million km2) by age 
class. 

 

Source: JRC 

 

The duration (and intensity) of disturbance, i.e., the number of years any given deforested land was 
under active land use (either cropland or pastureland), has implications for the type and rate of 
vegetation recovery. Figure 34 shows that 1/3 of the area of forest regrowth sensu lato had a 
period of active use less than 10 years. The remaining 2/3 were evenly distributed by other classes 
of duration of disturbance. 

 

Figure 34. Distribution of the area of secondary forests sensu lato by class of previous deforestation 
duration.  

 

Source: JRC 

 

The JRC-TMF dataset allows also disentangling the contribution of different disturbance-recovery 
processes to the annual dynamics of forest regrowth sensu lato (Figure 35). The majority (78%) of 
new forest regrowth between 1990 and 2013 are still standing in 2023, whereas the remainder 
was followed by deforestation/disturbance. We observed a four-fold increase of new forest 
regrowth after 2015 (2,000 km2 per year in 2011-2015 compared to 8,000 million hectares per 
year in 2016-2020). This is partially correlated with a four-fold increase in forest regrowth after 
fire disturbance (300 km2 per year in 2011-2015 vs 1,200 km2 per year in 2016-2020). 
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Figure 35. Annual dynamics of new forest regrowth according to different disturbance-recovery processes. 

 

 

Source: JRC 

How forest regrowth from JRC-TMF compares against other datasets 

The MapBiomas dataset described above (section 4.4) was compared with the forest regrowth 
sensu lato obtained from JRC-TMF for the year 2023. Overall, Silva Junior et al. (2020) [83] mapped 
56,900 km2 of secondary forest in the Brazilian Amazon moist forest domain (as defined by the 
JRC-TMF dataset) while JRC-TMF mapped 51,100 km2. However, there is a strong spatial mismatch 
between the area mapped as secondary forests by MapBiomas and its correspondence in JRC-TMF 
(Figure 36). Of the 56,900 km2 of secondary forests in MapBiomas, only 32% were also mapped as 
forest regrowth in JRC-TMF. Most striking is the fact that 37% of the area mapped as secondary 
forests by MapBiomas were mapped in JRC-TMF as deforested land without signs of regrowth. The 
reason for this might be that regrowth needs to have a minimum of 5 years of vegetative regrowth 
in JRC-TMF, compared to the ‘1-year recovery’ in MapBiomas dataset, or could be linked to the 
capacity of the JRC-TMF to identify disruptions (i.e. absence of tree cover) at sub-annual timescale, 
which is key to detect anthropogenic activities. 
 

Figure 36. Breakdown of the area mapped as secondary forests in Silva Junior et al. 2021 (updated to use 
collection 9 of MapBiomas) by class in the JRC-TMF dataset. The comparison refers to 2023 and only for the 
Brazilian Amazon within the tropical moist forest biome defined in JRC-TMF. The values in bold refer to areas 

in thousand km2. 

 

Source: JRC 
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Improving the detection of forest regrowth 

We cannot exclude the possibility that other dynamics or structural characteristics are driving the 
areas that were mapped as JRC-TMF secondary forests sensu lato. Therefore, several ancillary 
datasets were used to exclude 1) areas whose tree canopy height is lower than 5 meters33, 2) areas 
that are covered by tree plantations, and 3) forest areas that were impacted by fire. As a 
consequence, the area mapped as secondary forest in the Amazon basin in 2023 decreased to 
~60,000 km2 (Figure 37), the reduction mostly driven by areas that were impacted by fire 
(~20,000 km2), and much less by areas with canopy height less than 5 meters or plantations 
(together representing only 2,000 km2). 

Figure 37. The spatial distribution of secondary forests in the Amazon basin in 2023. Ancillary datasets about 
the spatial distribution of areas with canopy height less than 5 meters, plantations, and burnt areas were 

used to further filter the spatial distribution depicted in Figure 34. Country boundaries are delimited by black 
lines. The background dataset refers to the JRC-TMF Transition map, where is mostly visible the extent of 

undisturbed tropical moist forest 2023 (in green). 

 

Source: JRC 

Some areas that are mapped as secondary regrowth in Figure 37 might not really be natural 
regrowth originating from land use change dynamics. Therefore, an additional refinement is 
proposed leaving only those areas having a pattern of at least 5 years of consecutive disturbance 
(with at least one disruption detection by year). Applying this condition resulted in an area of 
~30,000 km2 being removed from the area mapped as secondary forests depicted in Figure 38 
shows the spatial distribution of secondary forests sensu stricto in the Amazon basin in 2023, which 
amount to 30,000 km2.  

                                           
33https://www.google.com/url?q=https://openreview.net/forum?id%3DZzCY0fRver&sa=D&source=docs&ust=17322726345

64749&usg=AOvVaw22lXv1jUycictQzD9iOYbP 
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Figure 38. The spatial distribution of secondary forests sensu stricto in the Amazon in 2023, further filtered 
from the spatial distribution depicted in Figure 37. Country boundaries are delimited by black lines. The 

background dataset refers to the JRC-TMF Transition map, where is mostly visible the extent of undisturbed 
tropical moist forest (in green). 

 

Source: JRC 

 

 

Figure 39 shows how the ca. 80,000 km2 mapped as secondary regrowth sensu lato are distributed 
according to the different dynamics mentioned previously. Secondary forests sensu stricto occupies 
essentially certain regions across the Brazilian arc-of-deforestation, areas south of the savannas of 
Roraima and along the Amazon River east of the Tapajós River. Furthermore, there is also higher 
incidence of these forests in areas of transition between TMF’s moist forest biome and open 
forests, savannas and dry forests in Venezuela, Colombia, Peru and Bolivia. 
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Figure 39. Distribution of the area mapped as forest regrowth sensu lato by TMF according to different 
forest dynamics and structural characteristics. The numbers in bold indicate the area of each class (in 

thousand km2) with the corresponding proportion indicated in parentheses. The brown area represents the 
secondary forest sensu stricto. 

 

Source: JRC 

 
 
 
Case studies of forest dynamics leading to forest regrowth 
 
The reasons for the regrowth of forests after deforestation or natural forest loss are manifold. 
Human-induced forest loss comprise small-scale and large-scale deforestation (incl. shifting 
cultivation) and forest fires, while natural causes of forest loss include the change of river courses 
and windthrow (even if the increase of the latter is often seen as a consequence of human-caused 
climate change [95]). Here we show six exemplary areas that demonstrate different dynamics 
related to secondary forest after complete loss of forest cover, according to JRC-TMF data. 
However, the underlying dynamics of secondary forests are often combined in the same area. 

Figure 40. Distribution of the six examples of secondary forest (sensu lato) over the Amazon basin. 

 

Source: JRC 
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Figure 41. A: Area of small-scale forest loss and secondary forest regrowth (light green) in the Bolivian 
Amazon (lat: -17.1375 lon: -64.7447) on Landsat imagery 2009 (left) and 2022 (centre) and TMF data (right), 

image width: 4 km. 

   

Source: USGS/JRC 

 

Figure 42. B: Secondary forest (light green) on abandoned pastures in the Brazilian Amazon (lat: -1.5329 lon: 
-53.4703) on Landsat data from 2006 (left), S-2 data from 2022 (centre) and TMF (right), image width: 5 km. 

   

Source: USGS/JRC 

 

Figure 43. C: Secondary forest (light green) after fire in the Brazilian Amazon (lat: -11.0775 lon: -53.2602) 
on Landsat data from 2008 (left), S-2 data from 2022 (centre) and TMF data (right), image width: 18 km. 

   

Source: USGS/JRC 
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Figure 44. D: Secondary forest (light green) after small-scale illicit crops abandonment in the Colombian 
Amazon (lat: 1.4495 lon: -71.8130) on Landsat data from 2004 (left) and 2022 (centre and TMF (right), 

image width: 10 km 

   

Source: USGS/JRC 

 

Figure 45. E: Secondary forest (light green) after the change of a river course in the Peruvian Amazon (lat: -
8.2800 lon: -74.5813) on Landsat data from 2008 (left) and 2022 (centre) and TMF (right), image width: 5 

km. 

   

Source: USGS/JRC 

 

Figure 46. F: Secondary forest (light green) after shifting cultivation in the Brazilian Amazon (lat: -3.4617 lon: 
-64.7236) on Landsat data from 2009 (left) and 2022 (centre) and TMF (right). Shifting cultivation patterns in 

this area are well documented in Jakovac et al. (2017) [96], image width: 5 km. 

   

Source: USGS/JRC 
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5 Update on national Brazilian policies in relation to deforestation 
and forest degradation in the Amazon (status up to mid-2024) 
 

At the 27th Conference of Parties of the UNFCCC (COP27) the Brazilian president promised to do 
everything to achieve zero deforestation in Brazil by 2030. Since then, in 2023, Brazilian 
deforestation in the Amazon region has decreased by 28.1% (compared to 2022), but remains at 
almost 8,000 km2 over the full year 2023, according to JRC-TMF data. To pursue further the 
ambitious goal, strong environmental governance would be indispensable [97]. For this purpose, the 
new Brazilian government (in office since 1st January 2023) has been re-vitalizing federal 
institutions like IBAMA, ICMBio (both responsible, amongst other tasks, for environmental law 
enforcement) and FUNAI (National Foundation of Indigenous People), and created the Ministry for 
Indigenous People. However, a conservative Congress (Senate and Chamber of Deputies) is setting 
limits to the current government’s progressive approach towards environment and indigenous 
people [98,99]34. 

Brazil is now back on the political world stage after years of isolation. Brazil organised the G20 
summit in November 2024 and will be hosting in November 2025 the UN Climate Change 
Conference (UNFCCC COP30) in Belém in the Brazilian Amazon. 

The Amazon Fund, currently containing more than 700 million USD donated by Norway, Germany, 
and other countries35, has been reactivated in 2023 and now supports a large number of activities 
related to environment, bio-economy and society, mostly located in the Brazilian Amazon36 37. 

 

Federal Environmental Institutions 

The Brazilian National Institute for Space Research (INPE), which amongst other tasks is responsible 
for the PRODES and DETER Amazon deforestation and forest degradation detection programmes, 
has seen a revival after years of stagnation and institutional dismantling previous to 2023. INPE is 
expecting a wave of almost 150 newly created positions in 2024 after having lost almost one third 
of staff between 2014 and 202338.  

Brazilian institutions that are responsible for the assignment of research grants (CAPES, CNPq) are 
struggling with tight budget allocations39 - with considerable negative impact on Brazil’s scientific 
output [100] - after their budgets had already seen a general downsizing during the years of the 
previous presidency40.  

With the help of the Brazilian Institute for Environment and Renewable Natural Energy (IBAMA), as 
environmental law enforcement action, deforestation rates in the Brazilian Amazon has been curbed 
substantially in 2023 and in the first half of 202441. IBAMA had been revitalised after having been 
almost paralysed during the former presidency (Pereira 2024). However, IBAMA staff and staff from 
other institutions dealing with environmental protection (ICMBio, SFB, MMA) went on partial strike 
for many months in 2024 for better work conditions and wages. During the strike, the number of 
operations in the field were reduced and, as a consequence, the number of environmental fines 

                                           
34 https://www.nature.com/articles/d41586-023-04042-x 
35 https://www.amazonfund.gov.br/en/home/ 
36 https://brazilian.report/liveblog/politics-insider/2024/06/17/brazil-amazon-fund-law-enforcement/ 
37https://agenciagov.ebc.com.br/noticias/202402/com-r-1-3-bilhao-para-projetos-e-chamadas-publicas-fundo-amazonia-

tem-recorde-historico-em-2023-1 
38 https://www.nature.com/articles/d41586-023-04041-y 
39https://portal.sbpcnet.org.br/noticias/enquanto-cnpq-e-finep-tem-crescimento-orcamentario-capes-sofre-com-

contingenciamentos-e-reducao-de-verbas-para-2024/ 
40 https://www.nature.com/articles/d41586-021-02886-9 
41 https://terrabrasilis.dpi.inpe.br/app/dashboard/alerts/legal/amazon/aggregated/ 
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decreased substantially42. The strike was called off in August 202443. The reduced field action of 
IBAMA and the other agencies were specifically problematic in view of the current surge in forest 
fires in the Amazon and Pantanal biomes in 202444 45. In addition, operating with a reduced number 
of effective fire-fighting aircraft hinders tackling the problem, according to the president of IBAMA, 
Rodrigo Agostinho46. 

 

Indigenous People 

The government of Brazil had, as one of its first activities at the beginning of 2023, put huge effort 
in solving the humanitarian Yanomami crisis in the North of Brazil. Illegal gold mining in their 
territories had brought mercury contamination, malnutrition, disease and violence to the Yanomami 
and other indigenous people [101,102]. However, after driving out most of the illegal intruders in 
2023 and successive federal investments into land protection infrastructure47, illegal gold mining is 
still menacing the Indigenous territory, as the number of illegal gold miners is reported to be again 
on the rise48. In general, illegal gold mining does not only threaten the Yanomami territory, but is 
very common also in numerous other Indigenous Lands throughout the Brazilian Amazon49 and in 
other Amazon countries [103,104] 50 51 52 53. 

Until April 2024, a total of 10 new Indigenous Lands (ILs) have been officialised during the new 
Brazilian presidency, while in the period of 2017-2022 none had been added to the list of 
homologated ILs54. The bill on the time frame (‘marco temporal’55) for the demarcation of 
Indigenous Areas (PL 490/2007) is still under discussion within the Brazilian political entities. If it 
becomes law, it would deny land rights to Indigenous peoples who had to abandon their traditional 
territories prior to 1988, the year when Indigenous land rights were established in the Brazilian 
Constitution. The Brazilian Supreme Court (STF) had cancelled the application of the law by 
declaring it unconstitutional in September 2023. Since then a battle between the conservative 
Brazilian Congress, the STF and the progressive Brazilian government is ongoing56, resulting in a 
series of conciliation sessions (starting on 5th August 2024) with participants from federal, state and 
municipal governments, members of society and indigenous organisations and communities, led by 
the STF57. These conciliation sessions in general and the criteria of the participants’ selection in 
particular are highly controversial58. The international scientific community has published many 

                                           
42 https://www.nature.com/articles/d41586-024-00279-2 
43https://www.reuters.com/business/environment/brazil-environmental-workers-sign-agreement-end-strike-holding-up-oil-

permits-2024-08-12/ 
44https://abcnews.go.com/International/brazil-experiencing-record-breaking-wildfires-persistent-drought-

affects/story?id=113688151 
45https://amazonwatch.org/news/2024/0917-immediate-global-action-needed-to-contain-amazon-fires-emergency-in-

collaboration-with-indigenous-and-traditional-communities 
46https://www1.folha.uol.com.br/internacional/en/scienceandhealth/2024/06/brazil-lacks-firefighting-structure-to-match-

climate-crisis-says-ibama-president.shtml 
47https://www.gov.br/planalto/en/latest-news/2024/01/copy_of_201cwe-will-treat-the-yanomami-as-a-matter-of-state-

201d-says-lula 
48https://g1.globo.com/rr/roraima/noticia/2024/07/18/garimpo-ilegal-avanca-em-novas-areas-da-terra-yanomami-mesmo-

com-fiscalizacao-diz-greenpeace.ghtml 
49https://www.theguardian.com/global-development/2024/nov/28/rise-birth-defects-in-brazil-para-state-illegal-gold-

mining-capital 
50 https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1042&context=jgi_research 
51 https://insightcrime.org/news/gold-mining-colombia-increasingly-tied-organized-crime-report/ 
52 https://dialogo-americas.com/articles/ecuador-organized-crime-increasingly-turns-to-illegal-gold-mining/ 
53 https://www.researchsquare.com/article/rs-4306490/v1 
54 https://www.gov.br/funai/pt-br/assuntos/noticias/2024/governo-federal-anuncia-demarcacao-de-mais-duas-terras-e-

reafirma-compromisso-com-os-povos-indigenas 
55 https://verfassungsblog.de/indigenous-rights-and-the-marco-temporal/ 
56 https://core.ac.uk/download/595391843.pdf 
57https://noticias.stf.jus.br/postsnoticias/entenda-as-audiencias-de-conciliacao-do-stf-sobre-a-lei-do-marco-temporal/ 
58https://apublica.org/2024/07/duvidas-e-incertezas-sobre-a-conciliacao-ditada-pelo-stf-no-marco-temporal/ 
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articles that confirm that Indigenous Lands are very effective for the protection of the forest [105–
111] 59 60. 

 

Environmental Laws 

Laws proposed by the Brazilian Congress or State governments in relation to Amazon environmental 
protection hamper the effectiveness of nature conservation. The Proposed Constitutional 
Amendment (PEC) 12/2022, foreseen to prohibit the creation of new Protected Areas in Mato Grosso 
State, has been in a process of repeated appeals and counter-repeals, when the Mato Grosso Court 
of Justice accepted the annulation of a legally created State Park in April 202461. The so-called 
Cristalino II State Park had been declared as “top conservation priority” for Amazon tree species and 
vulnerable faunal communities [112].   
 
The “mining bill”, or Proposed Law (PL) 191/2020, that would have legalised mining on Indigenous 
Land, has been withdrawn from further processing by the current Brazilian government [113] 62. 
Nevertheless, another proposed law (PL 6050-/2023) is currently underway – to be discussed at the 
Senate – that would permit mineral extraction and other activities on Indigenous Lands. 
 
The following proposed laws were in the process of being voted for or against in the Brazilian 
Congress (status 5th May 2024): 
 
The PL 364/2019 would take off protection from all “formations of predominantly non-forest 

native vegetation”, affecting an area of ca. 480,000 km2. The Pantanal wetlands, the Pampa 
grasslands and the native grasslands of Amazonia (mostly in Roraima State) would be left 
without protection [114]63. 

 
The PL 3334/2023 would reduce the legal reserve of the Amazon forest protection, specifically in 

municipalities that include more than 50% of protected areas on public land. In these areas the 
legal forest reserve could be lowered from 80% to 50%64. In addition, for the reduction of the 
‘legal forest reserve’ an approved ecological-economic planning by the Brazilian States in the 
Legal Amazon would not be required any more65. The proposed law has advanced in the 
Brazilian Congress in April 2024 and now needs to pass the Constitution and Justice 
Commission and Senate’s Commission of Environment66. 

 
PL 2374/2020 would extend the amnesty for illegal deforestation from currently July 2008 to May 

2012, in addition the Brazilian Ministry of Environment would be excluded from the discussion 
in the course of any legal process67.   

 
PL 1282/2019 and 2168/2021: the two proposed laws would liberate the construction of irrigation 

infrastructure in permanently protected areas (APPs), which could lead e.g. to the suppression 
of native vegetation, to conflicts related to the water usage, and to changes in the river 
hydrodynamics and water quality68 69. 
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PL 686/2022, if finally approved, would cut any control of competent authorities related to the re-

clearing of any secondary vegetation in areas of ‘alternative land use’. In consequence, in the 
Amazon and the Mata Atlântica, up to 170,000 km2 of secondary forest could be re-deforested 
without any type of control70. 
 

PL 3179/2004, also called 2159/2021, has been approved by the Chamber of Deputies and awaits 
the approval of the Senate. It would regulate anew the process of environmental licensing, 
which is seen an important measure to prevent environmental degradation caused by human 
activities71. Instead of being the rule, environmental licensing would be the exception. The new 
federal law would be one of the biggest threats to the Brazilian environment [115], because for 
any larger (e.g. infrastructural) undertaking with potential environmental impact, a mere self-
declaration by businesses would be enough, rather than a detailed environmental impact 
analysis (as it is the rule currently). However, in a decision in April 2024, the STF declared anti-
constitutional the proposed change of State (rather than federal) law by Tocantins State, that 
foresaw the ‘flexibilization’ (i.e. watering down) the rules for giving out environmental 
licences72. 
 

The bills on ‘Land Grabbing’ (‘PL da grilagem’), PL 2633/2020, PL 510/2021 and PL 3915/2021 
would extend the amnesty for illegal deforestation from 2008 until the end of 2014 and would 
permit, through a bidding process, the future regularisation of illegally deforested public land. 
In addition the bill will make it easier to regularise areas of illegal deforestation without any 
process of establishing environmental liability73. Since many years, organised crime groups 
(“Brazilian land mafias”) are involved in land grabbing operations [116,117]. Two bills await 
approval of the Brazilian Senate, while PL 3915/2021 currently lies at the Chamber of 
Deputies. 
 

PL 5822/2019 and PL 2623/2022 (both currently discussed at the Chamber of Deputies) would 
permit mineral exploration in Conservation Units of Sustainable Use in National Forest areas74 
as well as quarries in National and Nature Parks on federal, State and municipality level75. 
 

The “Poison Bill” (PL 6299/2002 and 1459/2022) changes significantly the rules for research, 
experimentation, production, storage, marketing, packaging, transportation, export, usage and 
disposal of pesticides [118,119] 76. At the same time the regulatory institutions for the permits 
of agrochemicals (pesticides etc.) to date, namely the Ministry of Health (through ANVISA) and 
Ministry of Environment (through IBAMA) were cut out of their responsibilities77, while, 
according to the PLs, the Ministry of Agriculture and Livestock now oversees the authorisations. 
The proposed law was vetoed by the Brazilian president at the end of 202378, but the veto was 
overruled by the Brazilian Congress in May 202479 80. 
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PL 2001/2019, PL 717/2021 and PL 5028/2023 (currently at the Chamber of Deputies for 
approval) are proposed to prevent the creation of new protected areas (Conservation Units of 
Indigenous Lands) on public land by setting the rule that all private properties within the 
defined borders of the protected areas (PAs) must be fully compensated81 82. In practise this 
will be difficult to apply and, in consequence, the PLs will stop (or slow down considerably) the 
establishment of new PAs83. 
 

PL 6049/2023 (currently at the Senate for approval) would change the legal status for the Amazon 
Fund (into a civil non-profit association), leading to a less agile Fund due to more bureaucracy 
and more administrative burden. This would make it more difficult to launch and finance 
important projects, e.g. related to deforestation control84. 

The State of Mato Grosso passed a law at the end of October 2024 designed to void the Brazilian 
Amazon Soy Moratorium, a mechanism that significantly reduced Amazon deforestation [120] by 
abolishing tax benefits for farmers adhering to the moratorium85 86 87. This disincentive for soy 
farmers to protect the forest is particularly problematic on the background of the planned grain 
transport railway Ferrogrão that will start in Sinop, Mato Grosso State, and lead towards the 
important grain port of Miritituba in Pará State. This railway would make grain transport more 
effective (thus less costly) and could lead to increased direct or indirect deforestation due to the 
expansion of soy production in Mato Grosso. At the same time, Mato Grosso State currently tries to 
change the Forest Code for the Amazon part of the State to reduce the percentage of native forest 
to be protected by land owners from 80% to 35% per land parcel, by re-classification of the State’s 
Amazon forest as being part of the Cerrado biome (with a lower forest protection level)88.  

 

Forest concessions 

The Brazilian government plans to expand (legal) selective logging concession areas in the Amazon 
region to more than 50,000 km2 in the next two years89, which is more than three times the current 
concession area defined by the Brazilian Forest Service (SFB). A further, massive increase of 
concession areas is not to be excluded90 91. According to Renato Rosenberg, the SFB’s Director of 
Forest Concessions, this measure would protect the forest from land grabbing and illegal 
deforestation, by rather using the forest as a sustainable source of timber and creating jobs and 
income in the region [121,122] 92. The logging companies would be able to log six trees per hectare 
over a 30-year period – with protected species, such as Brazil nuts and older seed-producing trees, 
strictly off limits, according to the SFB. However, scientific studies question the sustainability of the 
30-year repeat cycle, arguing that the Amazon forest will only be able to recover sufficiently if left 
‘in peace’ for a minimum of 60 years [123]. Another question is if the SFB has sufficient means and 
technical capacity to control large concession areas, i.e. carry out sufficient checks related to 
extraction area and design, and the type and amount of extracted timber [122,124,125]. 
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Infrastructure  

Asphalting the BR-319 

The most discussed infrastructural project in the Brazilian Amazon is the potential complete 
asphalting of the BR-319 Highway between Porto Velho in the Western Amazon and Manaus on the 
Amazon River, cutting through pristine forest between the Purus and Madeira rivers. Some 400 km 
between the turnoff to the BR-230 in the South and “KM 198” in the North are still without asphalt 
and are often impassable during the rainy season. The former as well as the current Brazilian 
government have expressed themselves as being in favour of the asphalting of the yet unpaved so-
called “middle part” (“Trecho do Meio”) of the BR-319 to provide secure transport on the whole 
length of the highway all year round [99].  

Asphalting the “Trecho do Meio” is strongly contested by scientific institutions, environmental 
agencies and NGOs. According to their views, pursuing the BR-319 project would create multiple 
environmental and social problems. A “reliable” road in an up-to-now almost untouched Amazon 
forest would trigger deforestation [126], attract land grabbers, illegal loggers, illegal miners and 
hunters and potentially lead to the expansion of the Amazon road network (e.g. the planned state 
highway AM-366 to Tefé)93 and to the building of numerous secondary roads [127]. In addition, new 
access to the undisturbed forest would increase the probability of forest fires [128–132], increase 
land conflicts [133] and would result in posing multiple health threats for all inhabitants of the 
region (and beyond), caused by bad air quality due to forest fires [25]94 95 96 97, a higher risk of 
Malaria transmission [26,134,135] and a higher risk for zoonotic spillover98 99 [136–139]. The 
asphalted road itself would pose no threat to the environment, but the lack of governance (or law 
enforcement) would make it a spearhead for deforestation and forest degradation and thus highly 
dangerous to the (up to 18,000) indigenous people and to the forest’s vulnerable floral and faunal 
biodiversity in its vicinity [140,141]. 

The “PL of the BR-319”, PL 4994/2023 passed the Chamber of Deputies at the end of 2023. The PL 
proposes to use an application of ‘urgency’ for its political assessment, which would speed up the 
approval process by leaving out any prior legislative debate, any expert hearings, discussions with 
affected communities, public bodies etc. [142]. The PL, in addition, should follow the path of a 
‘simplistic environmental licensing’ (rather than an all-encompassing one) by cutting the different 
parts of the roadworks into single and simplified ‘licensing pieces’. This proceeding is possible, but 
foreseen by the constitution only for “activities or works of little potential for an environmental 
impact”. As the environmental impact of the BR-319 complete asphalting cannot be classified 
“little”, the fragmentation of its environmental licensing in different parts should classified as non-
compliant, and, in consequence, the PL should be declared as anti-constitutional, as stated by the 
Brazilian Association of Members of the Ministry of Environment (ABRAMPA)100. 

The juridical battle between promoters and adversaries of the “Trecho do Meio” asphalting is 
ongoing. On 23rd August 2024, the Federal Regional Court rejected the appeal of the Transport 
Ministry101, which had decided to take legal action against the decision of the 7th Environmental and 
Agrarian Court of the Judiciary Section of Amazonas State, who had stopped in July 2024 the 
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process of licensing the works for the BR-319 asphalting. The reason for the court was the 
“environmental unfeasibility of the project until the environmental and land governance is 
drastically strengthened by different public actors”102. However, on 7th October 2024, the Regional 
Federal Court (TRF-1) suspended this decision, stating that this decision would only establish 
conditions for the roadworks and not permit the immediate start of the road works103. 

 

Figure 47. End of the asphalt (in 2024) of the BR-319 highway Manaus – Porto Velho, at the southern End of 
the “Trecho do Meio”, ca. 25 km north of the BR-230 and BR-319 turnoff 

 

Source: Google Street View 

 

The construction of the Pucallpa – Cruzeiro do Sul road 

Since more than four decades a road connection between the Peruvian city of Pucallpa in the 
Peruvian Amazon and Cruzeiro do Sul in Acre State (Brazil) has been discussed between the two 
countries. In May 2020 the Peruvian Government approved the road construction up to the Brazilian 
border, arguing the road to be a “public necessity of national interest”. On the Brazilian side the 
government of Acre State gave its OK and published the tender for the roadworks. A cost-benefit 
analysis by the ‘Conservation Strategy Fund’  in 2021 stated that the road would not be sustainable 
economically, and in addition, would cause deforestation in areas of high biodiversity and affect 
indigenous people in  ‘voluntary isolation’. In consequence, according to the analysis, the 
environmental and social costs would largely exceed the economic benefits. Notwithstanding the 
political interest of both countries to build the connecting road, in 2023 the Brazilian Federal Court 
decided in favour of NGOs and environmental associations that objected to the road construction 
and stopped the project104. 

 

Ferrogrão railway line 

The planned railway line of almost 1,000 km length that should connect the city of Sinop (as centre 
of the soy production) in the Southern Amazon with the port city of Miritituba (on Tapajós River in 
the Central Amazon) is another topic of fierce political debate. 

The ‘Supremo Tribunal Federal’ (STF, the highest Brazilian Court) had suspended the start of the 
railway’s construction in order to allow for the conclusion of environmental impact studies. While 
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Indigenous leaders of the region have expressed their opposition to the building of the railway line, 
due to the lack consultancy with indigenous people in the planning process and to their fear of an 
increase of deforestation related to the production of soy [143] 105. The STF has to decide at some 
stage if it is lawful to change the borders of the Jamanxim National Park in order to permit the 
construction of the railway line106. To avoid the STF’s potentially negative decision, the Brazilian 
Government has recently provided an alternative route of the planned train line to reduce eventual 
impacts for the National Park107. Especially in Central and Northern Mato Grosso the railway would 
considerably cut costs of the grain transport for the export overseas [144], which, as consequence, 
would make soy production more profitable in the region. At the same time Mato Grosso State is 
acting to weaken the federal Amazon forest protection laws in order to legalise additional 
deforestation (see above). Indigenous communities are expressing their opposition against 
Ferrogrão line108. 

 

Paraguay-Paraná Waterway Project 

The Paraguay-Paraná waterway runs with a length of more than 3400 km from the mouth of the 
Paraná River at the borders of Argentina and Uruguay up the town of Cáceres in Mato Grosso 
(Brazil), running through Central Paraguay and along the Bolivian border. It serves, specifically in the 
Southern part (approx. until Concepción, Paraguay), as important national and international water 
transport system. In Brazil, starting at the border near the Paraguayan town of San Lázaro, the 
waterway goes along and partly through the Pantanal biome, the world’s largest continuous 
wetland [145] and key hydrologic resource in South America. After first plans appeared in the 1980s 
to convert the Paraguay river into a river transport system [146], the Brazilian part of the project 
was turned down by the government in year 2000, due to concerns about the irreversible, systemic 
impacts on the Pantanal wetland in particular [147]. Nevertheless, smaller licences, e.g. for river port 
extensions etc., were issued in Brazil in 2022 and 2023 [148,149], threatening the ecological 
integrity of the Pantanal wetlands109. In addition, a potential ‘professionalization’ of the northern 
Paraguay river transport system, up to the town of Cáceres in the South of Mato Grosso State [150], 
could destroy the fragile river ecology. It could incentivise an increase of soy (or other commodities) 
production area in the Pantanal, the Southern Brazilian Amazon, in Paraguay and Bolivia and lead to 
the destruction of wetlands and to direct or indirect deforestation [147]. 

 

Energy 

Hydropower Dams 

Plans related to energy production of the current Brazilian government for the development of the 
Amazon region have triggered controversial debates. After a decade without new hydropower plants 
in the Amazon, Brazil has come back to the idea of hydropower from the Amazon region110, as well 
as the other Amazon countries [151], with a high number of new dams of different sizes, either in 
planning or in construction [152]. Due to its favourable physical and hydrological conditions, 
characterised by a substantial network of hydrographic basins, Brazil’s hydroelectric generation 
plays a crucial role in supplying household electricity demand [153]. Generally, a balance between 
the energy production, the socio-environmental aspects and multiple uses of water resources should 
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be reached [154,155]. The building and functioning of dams requires flooding, which, in the Amazon, 
often results in the destruction of large areas of forest. Newly created islands suffer from forest 
edge effects and fragmentation (leading to forest degradation), while the island’s forest flora and 
fauna will change considerably due to the lack of terrestrial connectivity [156]. In addition, dams 
alter river flood regimes that can affect forests a long way away from the reservoir, resulting in 
large-scale tree mortality [143]. More negative repercussions include fish mortality, loss of aquatic 
biodiversity, and ecological harm related to the fragmentation of once freely flowing rivers [151]. 
Despite the concerns of creating substantial socio-environmental problems [157,158], the Brazilian 
government points at the extension of hydropower plants in the Amazon region [159]. 
 

Oil and gas extraction 

A large section of the current Brazilian government promotes oil and gas production in the Amazon 
region111 112, both within the Amazon forest113 and at the Amazon River’s mouth114, despite the 
opposition of the Ministry of Environment and IBAMA115 and despite serious socio-environmental 
concerns [160,161]. However, oil and gas production and expansion happen not only in Brazil, but 
throughout the Amazon region116 117 118. After a slow start119 120 121, Ecuador has apparently shut 
down the first oil wells in the Yasuní National Park122, following a decision of a national referendum 
in 2023. However, a possible overturn of the referendum is already discussed in the national 
media123. 

 

Drugs, crime and violence  

The Amazon region has been an epicentre of environmental and social crimes since a long time. 
Typical activities that lead to violence include land-grabbing, illicit cropping and mining, and 
enterprise lobbying as well as armed conflict. Actors perpetuating these crimes can be individuals, 
private organisations, institutions, criminal groups, and even governments, among others [162]. In 
particular in Brazil, ‘land mafias’ - often an amalgamation of rural elites, police, and governmental 
and judicial power holders [116] - have surged in the context of land speculation and deforestation. 
Organised criminal groups like the “Comando Vermelho’ and the ‘Comando da Capital’ (and others) 
have been active in the context of drug-trafficking in Central and Southern Brazilian since a long 
time [163], but have shown a stronger presence in the Amazon since the 2000s [164], drawn by 
increasing revenues by illegal drug and gold commerce [165]. Their activities related to the nexus of 
drug and environmental crime, i.e. involvement in illegal mining activities, illicit cropping, illegal 
wood extraction, drug trafficking, human and animal trafficking, deforestation, land grabbing, arms 
smuggling, and forest arson124 125, have increased significantly in the past decade, making the 
Amazon one of the most dangerous regions in Latin America [162,166–168], while the often only 
sporadic presence of law enforcement in the region facilitate these activities [50,169]. At the same 
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time, the violence of the criminal groups against indigenous people and activists opposed to their 
illegal activities have risen to extreme levels, especially, but not restricted to, in border areas 
between Brazil, Peru, Colombia and Venezuela [49,164]126. While criminal groups collaborate across 
borders, the security and law enforcement collaboration between the Amazon countries is weak to 
non-existent [170]. The Brazilian Norther Amazon states of Amazônas, Roraíma and Amapá have 
the highest murder rates in Brazil [171]. The advocacy group Global Witness ranks Colombia as the 
most dangerous country in the world for environmental defenders and those defending land rights 
for Indigenous and other local community groups127, especially in the Amazon region128. 

                                           
126 https://amazonunderworld.org/ 
127 https://www.npr.org/2023/12/06/1214170818/colombia-environmentalists-murders-latin-america 
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57 

6 Conclusions and Outlook 
 

The year 2023 saw a decrease of forest disturbances (incl. deforestation and forest degradation) in 
the Pan-Amazon region (by 18.8%), with only few countries (or regions) having a contrary trend, like 
the Guiana Shield countries with an increase of almost 90%. In the first ten months of 2024 the 
Brazilian Amazon shows a further decrease of deforestation of 17.9%, according to the Brazilian 
deforestation alert system DETER, while forest degradation saw an increases by 375%, mostly 
driven by the massive surge (of more than 900%) in forest fires.  

The current Brazilian Government has strengthened the institutions dealing with forest monitoring 
and environmental law enforcement, which has led to the curbing of forest loss due to the 
conversion to pasture or crop fields. In 2023, the fines issued by IBAMA had increased by 53% in 
monetary terms, compared to the 2019-2022 average, while the destruction of illegal equipment 
rose by a factor of 11129. 

However, severe droughts in the Amazon region do not only affect vegetation, animals and people 
in the region, it also makes the forest more prone to fire and, in general, poses one of the greatest 
threats to the ecological integrity of Amazon forests  [172–174]. The Amazon basin has experienced 
an extreme drought that started in the austral summer of 2022-2023 that extended well into 2024 
[175]130. Fires in the Amazon region are not part of a natural cycle; they are almost exclusively from 
anthropogenic origin [176]. The combination of a drought-affected forest, exacerbated by rising 
temperatures due to climate change, together with the increased criminal action in the region131 
sets a worrying scenario. Indeed, most of the fires raging in the Amazon, leading to “record fires”132 
and the largest area of burned forest ever, are considered to have been started by arsonists, mostly 
in the interest of illegal loggers and land grabbers [116]. Effective firefighting in such a large area is 
a difficult (to impossible) task133. 

A countermeasure to Amazon forest destruction or degradation is consisting in preserving areas of 
secondary forests and forest regrowth. Secondary forests are the new forests that grow in places 
where the original forest has been removed, often due to activities like logging or agriculture 
[177,178]. In many tropical countries, including parts of the Amazon, these secondary forests are 
becoming more common. Secondary forests are a buffer for adjacent primary forests by reducing 
the forest edge effect that leads to negative impact on the forest structure [179]. In addition, they 
play an important role as carbon sink [32] and for restoring biodiversity in previously agricultural 
areas [36]. Amazon secondary forests are mostly located, not surprisingly, in regions of large-scale 
forest loss, like the Brazilian Arc of Deforestation [180] and the Northern, Western and Southern 
Amazon forest borders in Colombia, Peru, and Bolivia, respectively, and in the more populated areas 
along the Amazon River. According to JRC-TMF data, in 2023, the Pan-Amazon is covered by more 
than 83,500 km2 of secondary forest, which include a significant area of forest regrowth after 
severe fire. 

The fate of the Amazon rainforest is inextricably linked to the current and Brazilian policies. As the 
country prepares to host the 30th Conference of Parties (COP30) in Belém in late 2025, the 
government faces a critical juncture. It must make appropriate choices for a sustainable 
development of the Amazon region with the imperative of environmental protection. The extent to 
which the government prioritizes conservation efforts, curbing deforestation and forest degradation, 
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132https://news.mongabay.com/2024/04/amid-record-high-fires-across-the-amazon-brazil-loses-primary-forests/ 
133 https://www.theguardian.com/world/2024/sep/20/amazon-brazil-firefighters 



58 

and protecting the rights of indigenous communities, will significantly affect the health of the 
Amazon and its global ecological importance. 
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Annex 1: Using ‘Collection-2’ rather than ‘Collection-1’ Landsat 
imagery for mapping tropical forest change in the Amazon  
In 2020, The United States Geological Survey (USGS) reprocessed the whole Landsat archive of 50 
years of image collection in order to provide imagery with improved absolute geolocation accuracy. 
The enhanced Landsat Collection 2 (C2) has now replaced Collection 1 (C1), which has been phased 
out by USGS in 2022134. In the cloud computing space Google Earth Engine, where JRC-TMF is 
produced, C1 was removed from their servers in mid-2024135. The full Landsat Collection 2 has 
been used to recreate the new ‘TMF 2023’ dataset. The use of Landsat Collection 2 results not only 
in better quality input data, but also in an increase in the overall number of valid observations (i.e. 
observations free of cloud/cloud shadow/haze coverage or sensor issue) of 16% in the Pan-Amazon 
region for the period 1990-2022 compared to Landsat Collection 1. Figure 48a show the yearly 
distribution of valid observations per pixel from Landsat Collection 1 and 2 and Figure 48b 
provides a 5- year average representation. Landsat collection 2 brings an increase of 15% on 
average in the availability of valid observations and has an even bigger impact for 1990-1994 and 
2005-2009 with a 20% increase compared to Landsat Collection 1. 

 

Figure 48. Average number of valid observations per pixel for the Pan-Amazon region between Landsat 
Collection 1 and Collection 2. Panel a) shows a yearly distribution of valid observations from 1990-2022 
(boxplots display the median value as a horizontal bar, the 1st and 3rd quartile as a box and the whiskers 

drawn within the 1.5 interquartile range). Panel b) is a summary of panel a) and provides a 5 years average 
value of mean valid observations at Pan-Amazon scale between the two collections. 

 

Source: JRC 

                                           
134 https://www.usgs.gov/landsat-missions/news/landsat-collection-1-datasets-be-removed-december-30-2022 
135 https://developers.google.com/earth-engine/datasets/catalog/landsat 
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Source: JRC 

The significant increase of valid satellite observations leads to a more precise assessment of forest 
cover changes in the tropics, given e.g. the persistent cloud cover in many regions of the tropics and 
the, sometimes, short time period to detect e.g. short-duration forest disturbances (e.g. detection of 
selective fire or low-intensity fires). In addition, a better geolocation reduces false positives due to 
geometric mismatch between images. The increase of valid observations is specifically important 
for years of long wet seasons (with persistent cloud cover), especially in highly dynamic areas of 
forest cover change, and for the 1990 years with overall low numbers of valid Landsat 
observations. 

In addition to having an increased number of valid observations, we improved the classification of 
forest disturbances and recovery periods. First, we applied spatial filters to remove noise or false 
positives in the detection of short-duration disturbances. Second, we improved the detection of the 
first year of forest degradation and deforestation events given the enhanced input Landsat C2 data. 
The following rules based on the duration in days and recurrence of disruption detection (absence of 
tree cover in a 0.09 Landsat pixel) were applied throughout the time series:  

Degraded Forests are defined as pixels with a maximum occurrence of 3 short-duration disturbance 
events observed between 1990 and 2022. These short-term events have a maximum duration of 
900 days (when disruptions, i.e. absence of tree foliage cover within a Landsat pixel, are observed) 
and need to be separated by at least two years with no disturbance observation. In previous TMF 
versions, the duration of the first disturbance event was recorded in the number of days whereas 
the following events were only characterized by their duration in the number of years. In this TMF-
v2023 version, the duration in days of the first three disturbance events are recorded. Beyond an 
occurrence of three short-duration disturbance events, the pixel is classified as deforestation from 
the starting date of the first observed disturbance event. Note that the distinction between forest 
degradation and deforestation in the last three years of the analysis (i.e. including year 2023) is 
always based on the ratio between the number of valid observations and the number of observed 
disruptions. 

Deforestation refers to conversion of an undisturbed or degraded forest to another land cover type 
which is characterised in the TMF approach as a long-duration disturbance event (>900 days). The 
year of deforestation is attributed to the starting year of a disturbance event of more than 900 
days duration or to the starting year of the first disturbance event when more than three 
consecutive short-term disturbance events are detected. In the case of forest conversion to 
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agricultural plantations (e.g. oil palm, coconut or rubber plantations), the year of deforestation 
corresponds to the year of the first disturbance event if longer than 900 days or to the year of the 
second disturbance event if the first disturbance event’s duration was less than 900 days. 

Together, the improvement of the classification rules (for first year detection) and the reprocessing 
of the full Landsat archive to collection 2 led to updates in the historical dynamic of forest 
degradation and deforestation. It is important to note that change events that were detected in 
previous TMF versions are not removed but can be potentially reassigned to a previous year or 
converted to another class of change (e.g. indirect into direct deforestation). Figure 49 show a 
comparison between the area estimates of deforestation (direct and after degradation) and forest 
degradation (not followed by deforestation) from TMF version 2023 (TMFv2023) with version 2022 
(TMFv2022) for five years periods from 1990 to 2019 at Pan-Amazon level. 

Deforestation in TMF v2023 is 17% higher in the Pan-Amazon from 1990 to 2004 compared to the 
previous version v2022. This is due to several combined factors: (1) increase in the overall number 
of valid observations in particular for historical periods, (2) improvement in the distinction between 
degradation and deforestation through the more accurate recording of each disturbance event’s 
duration, (3) earlier attribution of the deforestation year in the case of large number of disturbance 
events, and (4) earlier attribution of the deforestation year in the case of forest conversions to 
agricultural plantations. We quantify an increase of 5% in total global deforestation in TMF v2023 
(56.4 Mha) compared to TMF v2022 (53.6 Mha) for the period 1990-2019. 

From 2010, we observed a 15% decrease in deforestation area estimates in TMF v2023 compared 
to TMF v2022. This can be explained by a decrease in deforestation after degradation after 2010 
which either occurred earlier in the time series or was reclassified into direct deforestation. Overall, 
there is a decrease of 9% in total degradation in TMF v2023 (41.8 Mha) compared to TMF v2022 
(38.2 Mha) for the period 1990-2019 but the trends using 5-years reporting periods remain similar 
between the two versions. 
 

Figure 49. Difference for the Pan-Amazon region in detecting deforestation and forest degradation 1990-
2019 by JRC-TMF with Landsat C1 or C2 collections. 

 

Source: JRC 
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Annex 2: New research on forests, deforestation, forest degradation 
and regrowth in the Amazon (status October 2024) 

Here we provide a comprehensive list of the most recent references about forest dynamics in the 
Amazon Basin, either land use / land cover change processes, drivers of forest change or effects on 
the wider climate system. The following table contains those references by major subject. 
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Air temperature [1], [2], [3], [4], [5], [6], [7], [8], [9] 
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Deforestation [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], 

[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], 

[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62] 

Degradation [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76] 

Droughts [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88] 

Edge effects [89], [90], [91], [92] 

Fire [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], 
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Remote sensing methods [208], [209], [210], [211], [212], [213], [214], [215], [216], [217], [218], 
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In person 

All over the European Union there are hundreds of Europe Direct centres. You can find the address of the 
centre nearest you online (european-union.europa.eu/contact-eu/meet-us_en). 

On the phone or in writing 

Europe Direct is a service that answers your questions about the European Union. You can contact this 
service: 

— by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

— at the following standard number: +32 22999696, 

— via the following form: european-union.europa.eu/contact-eu/write-us_en. 

 

Finding information about the EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 
website (european-union.europa.eu). 

EU publications 

You can view or order EU publications at op.europa.eu/en/publications. Multiple copies of free publications 
can be obtained by contacting Europe Direct or your local documentation centre (european-
union.europa.eu/contact-eu/meet-us_en). 

EU law and related documents 

For access to legal information from the EU, including all EU law since 1951 in all the official language 
versions, go to EUR-Lex (eur-lex.europa.eu). 

EU open data 

The portal data.europa.eu provides access to open datasets from the EU institutions, bodies and agencies. 
These can be downloaded and reused for free, for both commercial and non-commercial purposes. The 
portal also provides access to a wealth of datasets from European countries. 
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