

Support to Climate Change Mitigation and Adaptation in Russia and ENP East countries

Cement Plant Odra – Case Study

Andrzej Werkowski, Expert

GHG Inventory and MRV of Industrial Emissions Workshop, Tbilisi, 27-28 March 2017

Cement Plant Odra – Case Study Location

Cement Plant Odra – Case Study Location

Cement Plant Odra is located in the city of Opole in very close proximity to apartment districts

Cement Plant Odra – Case Study

Panorama from heat exchangers tower

- 1872 Beginning of cement manufacturing
- 1899 Cement plant with 3 shaft furnaces
- 1911 New cement plant "Opole Port" was built using wet technology – 3 rotary kilns with daily capacity 250 tonnes

- 1938 Annual cement production reached 200.000 tonnes
- 1947 Decision to rebuild the cement plant which was destroyed during the II World War (1939 – 1945)
- 1948 1951 Construction period. The biggest project within cement industry at that time
- 1951 Comissioning of 2 rotary kilns
- 1952 Comissioning of the kilns 3 and 4

- 1960s Further modernisation and capacity building
- 1975 Annual record production volume was reached – 895.000 tonnes
- 1970s New modern, high capacity cement plants were comissioned (Kujawy – 1972, Małogoszcz – 1974, Ożarów and Górażdże – 1977) putting Cement Plant Odra into severe competition challenge
- 1980s Sustainable drop of production
- 1989 Independent international report prepared for the Polish government with recommendation to shut down Cement Plant Odra

Cement Plant Odra – Case Study Raw materials deposit

- 1992 Foreign investor highly evaluates the potential of raw materials deposit – unique composition of all raw materials needed for clinker or portland cement production
- 1992 Organizational transformation from "state enterprise" onto joint stock company with 100% shares yet possesed by the State
- 1993 Miebach (Germany) acquired majority stake in the Company – Privatisation agreement included investor's commitment to run a modernization program – new era for Cement Plant Odra begins

- 1993 1999 Implementation of complex modernisation program
 - Modernisation of the Kiln 1 Wet technology was replaced by dry method of cement production
 - Daily production capacity reached 1.200 tonnes of clinker
 - Sound reduction of CO₂ and industrial emissions (dust, SO₂, NOx) followed the modernisation – Cement Plant Odra becomes environment friendly company
 - Automatic modern control and stearing system for the cement production line

Cement Plant Odra – Case Study State-of-the-art production control system

- 1999 Municipal solid waste sorting plant built in Opole (first such project in Poland) producing "BRAM" (Brennstoff aus Mull) – alternative fuel from flamable part of municipal waste
- 2006! Comissioning of the plant 7-year delay caused mainly due to:
 - Legal regulations concerning environment protection did not entirely cover such type of installation
 - Local community obstacles against "waste in the neighbourhood"
- 2003 2008

Finding market niche and achieving leadership position in "Cement with additives"

- One of the world biggest slag cement manufacturer
- 35-40% share of cements with additives in total cement production comapared to 25% country average

- 2004 Implementation of Integrated
 Management System according to ISO
 9001 (Quality management) and ISO
 14001 (Environmental management)
- 2008 Implementation of Microsoft Dynamics AX

 state-of-the-art IT facility supporting
 management systems
- 2011 100th Anniversary of the Cement Plant Odra

- 2013 Implementation of EMAS voluntary Eco-Management and Audit Scheme
- 2015 Comissioning of instalation supplying alternative fuel to rotary kiln
- 2015 Comissioning of:
 - Separator installation for cement mills 1 4
 - Installation for drying and grinding blust furnace slag using a vertical roller-plate grinding mill

- 2004 Replacement of fibric filters in cement mills with new generation filters
 - Sound reduction of dust emission
 - Meeting regulatory requirements
- 2006 New cement dispatch terminal
 - Fully automatic process zero menpower
 - Acceleration of loading process
 - Reduction of dust emission
- 2006 Replacement of compressors with modern equippment
 - Reduction of electric energy
 - Compressed air cost reduction
 - Reduction of noise

- 2007 Central control room Simens PC 7 system
 - Constant monitoring of the process from one place
 - Prediction of breakdowns
 - Improvement of work efficiency and safety
- 2008 Replacement of clinker cooler with IKN modern clinker cooling equipment
 - Lowering clinker temperature to appropriate level
 - Rotary kiln efficiency improvement
 - Stabilizing of clinker burning process
- 2009 Refurbishment of buildings, roads, parking areas and production halls
 - Dust emission reduction
 - Safety of work upgrade
 - Public relations company image improvement

- 2009 Replacement of electrofilter serving the slag drying room with modern fiber filter
 - Dust emission reduction
- 2010 Covering the clinker and the slag storage hall
 - Dust emission reduction
- 2011 Replacement of electrofilter serving the rotary kiln with efficient modern fiber filter
 - Meeting EU requirements concerning dust emission limits

- 2012 Change of raw materials transport replacement of narrow-gauge railway track with enclosed conveyor belt system and building intermediate preblanding storageland
 - Reduction of diesel oil used for transportation
- 2012 Modernisation of cement mills filters by increase of the filtering surface
 - Improvement of effectiveness of exhaust gases treatment
- 2012 Modernisation of high voltage distribution station by equippment replacement and implementation of energy management system
 - Reduction of electric energy consumption

- 2013 Watering system for raw materials storageland
 - Reduction of dust during piling the stone on the prism
- 2015 Installation dosing alternative fuel to the rotary kiln
 - CO₂ reduction
 - SO₂, NOx and dust reduction
- 2015 Dynamic separators for cement mills 1 4
 - Reduction of electric energy consumption
 - Quality improvement
- 2015 Installation for drying and grinding blust furnace slag with a vertical roller-plate grinding mill
 - Reduction of hard coal usage (CO₂, SO₂, NO_x reduction)
 - Waste heat recovery

- Shut down of the old sewage treatment station and building a new modern station linked with the city sewage treatment system
- Sound protection screens for all noisy pieces of equippment
- New Komatsu excavators for raw material quarry, which entirely eliminated blasting with related noise and seismic vibrations
- Use of 350.000 tonnes/annum of secondary raw materials (blust furnace slag, fly ashes, reagypsum)
- Use of alternative fuels

Cement Plant Odra – Case Study Production process

Dust emission decreases

CO emission increase – due to production increase

Cement Plant Odra – Case Study Modernisation in 2017 - 2018

Modernisation in 2017 – 2018

- NOx reduction from clinker burning installation
 - Selective Non-Cathalytic Reduction (SNCR)

 - Current parameter 0,9021 kg/Mg clinker
 - Target

- 0,8640 kg/Mg clinker

Cement Plant Odra – Case Study

History of Cement Plant Odra proves that success can be achieved as a result of:

- Gift from the nature
- Reliable investor
- Committed people
- Hard work
- Shot of luck

"Next 100 years for future generations"

How to contact ClimaEast

The project team can be contacted at personal e-mail addresses a.werkowski@hotmail.com and:

info@climaeast.eu

Clima East Office, c/o Milieu Ltd Chaussée de Charleroi No. 112 1060 Brussels (Belgium)

Tel: +32 2506 1000

Website:

English: www.climaeast.eu - Russian: http://russian.climaeast.eu/

Follow us on Facebook: look for CLIMA EAST PROJECT

