

Support to Climate Change Mitigation and Adaptation in Russia and ENP East countries

Polish Cement Industry
EU ETS – lessons learnt

Andrzej Werkowski, Expert

GHG Inventory and MRV of Industrial Emissions Workshop, Tbilisi, 27-28 March 2017

EU ETS Summary

- The European Union Emissions Trading System (EU ETS) is the world's first trading system
- EU ETS represents the central pillar of the European Union's climate change policy
- EU ETS covers ~ 45% of overall GHG emissions
- Reduction targets
 - By 2020: 20% below 1990 GHG levels
 - By 2030: at least 40% below 1990 GHG levels
 - By 2050: 80-95% below 1990 GHG levels (not binding yet)

EU ETS GHG & Sectors covered

- Phase I (2005 2007) CO₂
 - Power stations and other combustion installations with >20MW thermal rated input
 - Industry including oil refineries, coke ovens, iron and steel plants and production of cement, glass, lime, bricks, ceramics, pulp, paper and board
- Phase II (2008 2012) CO₂
 - Aviation (added in 2012)
- Phase III (2013 2020) CO₂, N₂O, PFCs
 - CCS installations
 - Production of petrochemicals, ammonia, non-ferrous and ferrous metals, gypsum, aluminum, nitric, adipic and glyoxylic acid

Phase I (2005 – 2007)

- Decentralized cap-setting
- The EU cap aggregation of the National Allocation Plans of each Member State
- Nearly 100% free allocation through grandfathering
- Some Member States used auctioning and some used benchmarking

Phase II (2008 – 2012)

 Similar to Phase I with some benchmarking for free allocation and some auctioning in eight EU Member States (about 3% of total allowances)

- Phase III (2013 2020)
 - Single EU-wide cap for stationary sources: 2,084
 MtCO₂e in 2013, which will be annually reduced by a constant linear reduction factor 1.74%
 - Aviation sector cap: 210 MtCO₂e/year
 - Electricity sector
 - 100% auctioning
 - Optional derogation for the modernization of the electricity sector in certain Member States

- Phase III (2013 2020) cont.
 - Manufacturing sector
 - Free allocation is based on benchmarks
 - Sub-sectors deemed at risk of carbon leakage will receive free allocations at 100% of the pre-determined benchmarks
 - Sub-sectors deemed not at risk of carbon leakage will have free allocation phased out gradually from 80% of the benchmarks in 2013 to 30% by 2020
 - Aviation sector
 - 82% of allowances allocated for free based on benchmarks
 - 15% of allowances auctioned
 - 3% of allowances reserve for new entrants and fast growing airlines
 - Back-loading
 - New entrants reserve

- Phase III (2013 2020) cont.
 - Back-loading
 - Short term measure to address a growing surplus in the EU ETS
 - Postponing the auctioning of 900 million allowances until 2019-2020 (auction volumes reduced by: 400 mln in 2014, 300 mln in 2015 and 200 mln in 2016)
 - Creation of Market Stability Reserve (MSR) the back-loaded allowances will not be auctioned but be placed directly in the MSR
 - New entrants reserve
 - 5% of the total allowances for new installations coming into the EU ETS or installations whose capacity has significantly increased since their free allocation was determined

Cement Production CO₂ emissions – MRV

- Monitoring, reporting and verification (MRV) of emissions play a key role in the credibility of the European Union Emission Trading Scheme (EU ETS)
- It is the complete, consistent, accurate and transparent monitoring, reporting and verification system that creates trust in emissions trading.

Coment Production CO₂ emission – MRV

Principle of the EU ETS compliance cycle

EU ETS CO₂ emissions – MRV

The main cycle

- The operator monitors the emissions throughout the year
- Annual Emission Report (AER) is prepared within 3 months after the end of the calendar year
- Verification of the AER is performed by authorized verifier
- The verified AER is submitted to the Competent Authority (CA)
- The monitoring continues without any stop at the end of the year.

EU ETS CO₂ emissions – MRV

The monitoring process

- Resulting data must be sufficiently robust for creating trust in the reliability of the ETS, including the fairness of the surrender obligation, and it must be consistent throughout the years
- The operator must ensure that the monitoring methodology is documented in writing, and cannot be changed arbitrarily
- Monitoring Plan (MP) written methodology every installation in the EU ETS must have for the emission of greenhouse gases
- MP must follow the requirements of the EU-wide applicable legislation, in particular the Monitoring and Reporting Regulation (MRR)

EU ETS CO₂ emissions – MRV

Competent Authority

- Supervise the compliance of the operators
- Approve every MP before it is applied
- Carry out inspections at installations
- Carry out checks on the AERs

The second cycle

- Regular review of the MP
- Improving the monitoring methodology and identifying elements of the monitoring methodology which are not appropriate any more, for example, after technical changes have been made to the installation

Cement Production Process

Cement manufacturing The core process

Calcination

Decomposition of calcium carbonate (CaCO₃) at about 900°C to calcium oxide (CaO, lime) and liberated gaseous carbon dioxide (CO₂)

Clinkering

The calcium oxide reacts at a high temperature (typically 1400–1500°C) with silica, alumina, and ferrous oxide to form the silicates, aluminates, and ferrites of calcium which comprise the clinker.

Grounding & Milling

The clinker is ground or milled together with gypsum and other additives to produce cement.

Cement production GHG emissions

CO₂ emissions in cement production are threefold:

• **Process emission**: as the limestone is heated, it changes into lime and CO₂. These emissions represent **60 to 65%** of total emissions linked to cement production

$$CaCO_3 \longrightarrow CaO + CO_2$$

- From the fuel combustion to heat the raw materials in a kiln to form clinker, which is later crushed and blended with additives to make cement – 35 to 40%
- From the production of the electrical energy used to grind the raw materials and clinker – Indirect emissions

Emissions of CH₄ and N₂O are marginal

Cement production GHG emissions

- ~ 60% CO₂ Process emission
 CaCO₃ → CaO + CO₂
- ~ 40% CO₂ Emission from Fuel combustion
- Marginal emission of CH₄ and N₂O

Cement production Main process routes

Dry process

Raw materials are ground and dried to raw meal in the form of a flowable powder. The dry raw meal is fed to the preheater or precalciner kiln or, more rarely, to a long dry kiln

Semi-dry process

The dry raw meal is pelletized with water and fed into a grate preheater before the kiln or to a long kiln equipped with crosses.

Semi-wet process

The slurry is first dewatered in filter presses. The resulting filter cake is extruded into pellets and then fed either to a grate preheater or directly to a filter cake dryer for raw meal production

Wet process

Raw materials (often with a high moisture content) are ground in water to form a pumpable slurry. The slurry then is either fed directly into the kiln or first to a slurry dryer.

Cement Production CO₂ emission

	Unit	Dry method	Wet method
Heat consumption [1]	GJ/Mg clinker	3,4	6,8
CO ₂ factor related to fuel consumption [2]	kg CO ₂ /GJ	94,5	94,5
CO ₂ emission from fuel combustion [1]*[2]	Kg CO ₂ /Mg clinker	321	643
CO ₂ emission from raw materials burning	Kg CO ₂ /Mg clinker	535	535
Total CO ₂ emission	Kg CO ₂ /Mg clinker	856	1.178

EU ETS – Phase I 2005 – 2007 EUA allocation – Poland

Total allocation – 239 mln t CO₂/annum

EU ETS – Phase I 2005 – 2007 Learning by doing

- 1 January 2005 Start EU ETS
- 2005 ÷ 2007 Learning by doing, getting familiar with the System
- Lack of credible data from installations due to absence of reliable MRV system – limits established as "Best guess", companies "to be on the safe side" reported higher emissions numbers
- Carbon Market first structures and institutions
- Appointment of National Administrators
- New alliances of energy-intensive industries FORUM^{CO2}
- Creation of infrastructure for monitoring, reporting and verification of the emissions – MRV (Monitoring, Reporting, Verification)
- Begining of EUA trade within the European Union

EU ETS – Phase I 2005 – 2007 Learning by doing

- The System failed as a driver for GHG emission reduction
- Main reason too many allowances allocated to the installations (surplus of 200 mln EUAs)
- It applied to most of the EU installations
- Consequence drop of EUA close to zero!
- Collapse of EU ETS in 2007

EU ETS – Phase I 2005 – 2007 Drop of EUA price

EU ETS – Phase II 2008 – 2012 Lessons learnt

- Data from installations based on real emissions from 2005
 - MRV systems implemented
- Planned deficit of allowances in the System 150 200 mln EUA/annum

but

- Financial crisis in 2008 2011 resulting in production decrease "helped" the installations to stay below the established caps
- Similar to Phase I lack of strong impulse from EU ETS for CO₂ reduction
- Good news further development of reliable MRV systems

EU ETS – Phase II 2008 – 2012 EUA allocation – Poland

EU ETS – Phase II 2008 – 2012 Drop of EUA price

EUA price did not reached the assumed level of \in 35 \div \in 40 Quick drop from \in 20 to \in 13, and at the end of the Phase II EUA price reached its minimum \in 6 \div \in 7

EU ETS – Phase II 2008 – 2012 Drop of EUA price

- Despite weak influence from EU ETS cement industry continued in 2008 – 2012 implementation of energy efficiency related projects resulting in CO₂ abatement and decrease of energy usage, both thermal and electric
- Those activities were driven mainly by economic factors, growing competition and IED – IPPC requirements

How to contact ClimaEast

The project team can be contacted at personal e-mail addresses a.werkowski@hotmail.com and:

info@climaeast.eu

Clima East Office, c/o Milieu Ltd Chaussée de Charleroi No. 112 1060 Brussels (Belgium)

Tel: +32 2506 1000

Website:

English: www.climaeast.eu - Russian: http://russian.climaeast.eu/

Follow us on Facebook: look for CLIMA EAST PROJECT

